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Abstract

It is studied how structural properties of certain linear systems can be exploited to derive reduced dimension multi-parametric quadratic
programs that lead to explicit piecewise linear feedback solutions to the state and input constrained linear quadratic regulation problem.
The reduced dimensionality typically results in sub-optimal controllers of lower complexity, with associated computational advantages in the

online implementation. At heart of the methods are state space projections based on the singular value decomposition.

I. INTRODUCTION

In this work we consider constrained linear quadratic regulators (LQR) [1], [2]. Recently, explicit solutions in terms
of piecewise linear (PWL) state feedbacks have been investigated [3], [4], [5], [6]. In particular, numerical algorithms
for multi-parametric quadratic programming (mp-QP) has opened for the efficient and exact design of such PWL state
feedback laws defined on polyhedral partitions of the state space. This allows the conventional, but resource demanding,
real-time optimization approach [1], [2] to be replaced by a simple PWL function evaluation, at least for problems of
moderate complexity. However, the complexity of the polyhedral partition tend to increase rapidly with the number of
constraints, and the dimension of the state vector. This has led to approximate algorithms for solving mp-QP problems
being investigated, [7], [8], with significant reduction in complexity. Moreover, it has led to the investigation of efficient
implementation of piecewise linear function evaluation [9], [10], [11] as well as input trajectory parameterization [10]
and restrictions on the active constraint switching [12] in order to reduce the complexity.

In the present work we take a different approach, which can be used in combination with any of the approaches
mentioned above. It is based on the idea that certain structural properties of linear systems may be exploited in order
to define an approximate mp-QP problem on a sub-space of the state (parameter) space. This results in a sub-optimal
PWL state feedback defined on a lower-dimensional space, combined with a full linear state feedback. The benefit of this
is that the mp-QP of reduced dimension typically requires less computer processing and memory, both offline and online.
Two methods are suggested. The first method is useful only for systems where the constrained states are separated
from the inputs by relatively few integrators. The resulting sub-optimal control is shown to be stabilizing under some
conditions on the error being introduced when the cost function is redefined on a lower-dimensional space. The second
method defines a lower-dimensional approximate mp-QP by relaxing the constraints by allowing small violation. The
resulting sub-optimal control is shown to be stabilizing if the constraint relaxation is small, and is also proved to be of

lower complexity.
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II. ExpLICIT CONSTRAINED LINEAR QUADRATIC REGULATOR

Formulating the constrained LQR problem as an mp-QP is briefly described below, see [4]. Consider the linear system
z(t+1) = Az(t) + Bu(t) (1)

where z(t) € R” is the state and u(t) € R™ is the input. Define the infinite-horizon cost

o0

Joo (’U,t, ’U,t+1, sy iL'(t)) = Z (mf+k|tht+k|t + ’U,g;_kR’U,H_k) (2)
k=0

with predictions ¥4 g1 = ATeqpe + Butr, output yyq g = Crypppy and 2, = 2(t). We assume symmetric Q, R > 0
(positive definite) and (A, B) is controllable. Introducing state and input constraints on the first N samples leads to

the following constrained optimization problem
Vi) = minJ(U (1) (3)
SUbjeCt to Ymin S yt+k|t S Ymazr Umin S Ut4k—1 S Umazy k= ]-7 27 7N (4)

with U = (ug, ..., uzrn—1) and the cost function given by

N-1

JUz(t) = Y, (xtT+k|tQ~Tt+k\t +UtT+kRUt+k) + o N Pren e (5)
k=0

It is assumed that ymin < 0 < Ymaz> Umin < 0 < Umqe such that the origin is in the interior of the admissible set. The
symmetric final cost matrix P > 0 is taken as the solution of the algebraic Riccati equation. With the assumption that no
constraints are active for k > N (see [1], [2]) this finite-horizon problem is equivalent to minimizing the infinite-horizon
LQ criterion (2). With proper definitions of the matrices Y, H, F,G,WW and E, see [12], [4], this and similar problems

can be reformulated as follows: Minimize with respect to U

1 1
JU,z) = 5UTHU +2TFU + 59:TY9: (6)

subject to GU <W + Ex (7)

It is shown in [4] that H > 0 due to R > 0, such that this problem is strictly convex. Completing squares in (6)-(7), the
dependence on z is moved from the cost to the constraints, such that the problem is equivalent to the following problem
(similar to the closed-loop prediction formulation suggested in [13])

1
Vi(z) = minizTHz (8)

z

subject to Gz <W + Sz 9)

where 2 = U+ H 'FTz and S = E+ GH 'FT. The unconstrained LQ optimal control is denoted Upq(t) = —K gz (t)
where Ko = H™'FT is an extended LQ gain matrix. The m first elements of Urq(t) are denoted urq(t), and the
corresponding m first rows of K¢ are denoted krg, the usual LQ gain matrix. Eqs. (8)-(9) defines a strictly convex
mp-QP in z parameterized by = € X, where X is a given closed polyhedral set. This mp-QP can be solved explicitly
using the algorithms described in [4], [6], which give the solution z*(z) as an explicit PWL function of z € X with the

following properties [4]:
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Fig. 1. Feedback structure I.

Theorem 1: Consider the mp-QP (8)-(9) with H = 0. The solution z*(z) (and U*(z) = 2*(z) — H 'FTz) is a
continuous PWL function, and V*(z) (and V*(z) = V*(z) + 27 (Y — FH7'FT)z) is a convex piecewise quadratic
function. O

The complexity of solving the mp-QP and implementing the resulting PWL state feedback increases very rapidly with
the number of constraints and the dimension of the state space. In this work we suggest some methods for reducing
complexity, where we essentially replace the linear terms Ex and FTz in (6)-(7) or Sz in (9) with approximate linear
terms defined on a sub-space of the state space. This leads to new (sub-optimal) mp-QPs defined on a lower-dimensional

parameter space, which usually has computational advantages.

III. FEEDBACK STRUCTURE I

Consider the feedback structure in Figure 1. It contains an inner PWL feedback loop, to be designed by solving an
mp-QP, and a linear outer feedback loop, to be designed to achieve local LQ optimality. The idea is that the inner PWL
loop relies on feedback from a reduced state ( = T'z, where the projection matrix 7' € RP*™ with 2p < n, is chosen such
that it contains the necessary information to guarantee close-to-optimal control of ( to its specified setpoint ¢*, while
fulfilling all constraints. This amounts to solving an mp-QP with 2p parameters.

Lemma 1: The constraints (7) are equivalent to
GU < W+ Ex (10)

where ¢ = Tz is defined by the projection matrix T = Vi, and Ey = UpXo, where Uy, Vo, X are the sub-matrices of
the singular value decomposition (SVD) E = UXVT corresponding to non-zero singular values.

Proof. Ex = UXV T2 = UySoVi 2 = EyTx = Eo(, cf. [14]. O

Theorem 2: The row rank of the observability matrix W, = (CT,(CA)T, ..., (CA" 1)T)T of the system (A, C) is an
upper bound on the number of non-zero singular values of E, such that p = dim({) = rank(E) < rank(W,). For N > n,

p = rank(W,).



Proof. For input constraints, the corresponding rows of E are zero. For a generic output constraint ¢, < y(t+k) <

Ymaz the corresponding block of E is C'A*, see e.g. [12]. Hence, E can be written

O2Nmxn
E = W (11)
—Wn

where the first block corresponds to input constraints and the two last blocks corresponds to the output constraints,
with Wy being the Krylov matrix Wy = (C7,(CA)T,(CA*)T, ..., (C’AN)T)T. For N > n, the row rank of W equals
the row rank of W, due to Cayley-Hamiltons theorem. The row rank of E equals the row rank of Wy, from(11), and

the result follows by Lemma 1. O
Example. A laboratory model helicopter (Quanser 3-DOF Helicopter) is sampled with interval T' = 0.01s, and the

following state-space representation is obtained

1 0 001 O OO 0.0000  0.0000
0 1 0 001 0 O 0.0001 —0.0001
0 0 1 0 0 0 0.0019  0.0019
A = s B =
0 0 0 1 00 0.0132 —0.0132
0.01 O 0 0 1 0 0 0
0 001 O 0 01 0 0

The states of the system are z; - elevation, z» - pitch angle, x3 - elevation rate, x4 - pitch angle rate, x5 - integral of
elevation error, and x4 - integral of pitch angle error. The inputs to the system are u; - front rotor voltage and us - rear
rotor voltage. Assume the state is to be regulated to the origin with the following constraints on the inputs and pitch

and elevation rates —1 <wu; <3, -1 <wup <3, —0.44 <y, <0.44, and —0.6 < y» < 0.6 with

0 01 0 0 O
c =

0001 O0O0

We assume the horizon N = 50 and the input trajectory is a piecewise constant function of time parameterized by 3
parameters per input as in [10]. For this 6th order system the observability matrix of (4,C) and E both have rank 2,
since there is one integrator between the inputs and each of the two constrained states in this cascaded system. Hence,
p=m = 2 and the dimension of the mp-QP parameter space is reduced from n = 6 to 2p = 4. Since T =V = C, the
resulting cascaded control structure has a simple interpretation. The inner loop controls the pitch and elevation rates
to their reference values, subject to the constraints. The outer loop is a linear position feedback with integral action. O

The above results suggest that for the purpose of fulfilling the constraints it is sufficient to use information only
about those modes of the system that are observable from the output y = Cz, which are the constrained modes. This
usually leads to a complexity reduction since certain modes can be neglected. The neglected modes might otherwise have
contributed with additional optimal combinations of active constraints that would have lead to additional polyhedral

regions in the PWL mp-QP solution. Neglecting these modes does instead lead to sub-optimality, because it is necessary



to change the cost function such that it does not depend on the neglected modes. Obviously, the reformulation (10)
makes sense only if it is possible to find a projection matrix with p < n/2, since otherwise there will be no reduction in
the dimension of the parameter space. The approach is also meaningless if there are only input constraints or if p < m.
On the other hand, it was suggested by the example that the idea is useful when the system possesses some structural
properties, such as a cascade where all constrained states are ”close to the inputs” in the sense that there are relatively
few integrators between the inputs and the constrained states. The suggested feedback structure may also be useful in
an approximate setting. In this case p will equal the number of singular values of E that are significantly larger than
Zero.

In order to design the feedback laws, we introduce the similarity transform
= Vg (12)

where the vector ¢ contains the p modes that are observable through the constrained states y, and ¢ the n — p modes
that are not. Hence, the following projections hold: ¢ = Vil'z, o = ViI'z with V;, € R™P and V; € R**("=P)  Since V
is orthogonal, the inverse transform is given by # = V¢ + Vio. We define the following projected matrices Fo = Vil F,
and Fy = V;T'F. We are then in position to reformulate the cost function (6) into the form that reflects the objective of

regulating ((t) to some setpoint (*:
1 1
JUC(t),0(t) = 5UTHU + (¢t = CTRU + E:UTYa: +CTRU 4+ TR U (13)

We have introduced the new variable (*, whose value does not influence the value of J. A sub-optimal strategy is

developed by isolating the two first terms into the optimization criterion

BUCH,¢) = SUTHU+ () - ¢ RU (14)

subject to GU < W + Ep((t) (15)

Assuming 2p < n, (14)-(15) define a reduced-dimension mp-QP on a 2p-dimensional sub-space of the state space, and
from the results above it is guaranteed that for any (* the original constraints (7) are fulfilled. When solving the mp-QP
(14) - (15) a set T x YT* of possible ({,(*) must be specified. Polyhedral T and Y* can be specified by projections of
the polyhedral set X: T ={C e RP [( =Tz, x € X}, Y* ={¢(* € R? |(* = Kz, ¢ € X}. Let the solution to (14)-(15)

on T x T* be denoted U§(¢,(*) and its first m elements ug((, ¢*). The receding horizon control is then given by

u(t) = ug(C(t),C* (1)) (16)

The variable (* is viewed as a reference signal to the inner loop, see Figure 1. Since the constraints are guaranteed to
be fulfilled with the PWL inner feedback loop described above, we restrict our attention to a (sub-optimal) linear outer
loop that determines (* = Kz. Let the gain matrix of the reduced-dimension unconstrained LQ design be denoted

ko € R™*P and given by the m first rows of the matrix Ko = H™'F] = KroVp. Hence, u = —ko(¢ — ¢*) coincides



with the solution u{(¢,(*) of (14) - (15) in a neighborhood of the origin. Local LQ optimality follows if K € RP*™ ig
appropriately chosen:

Theorem 3: If p > m and rank(kg) = m, there exists a gain matrix K solving the system of linear equations
koK = koT — kLo (17)

and the system (1) in closed loop with the control (16) and (*(t) = Kx(t) is locally (unconstrained) LQ optimal, with
respect to (2).

Proof. Notice that (17) defines mn linear equations with pn unknowns, and recall that p > m.

ko O 0 K (koT — kro)!
0 k 0 K2 koT — k 2

0 _ (ko LQ) a8)
0 0 ko K™ (koT — kro)"

The superscript index denotes the corresponding column of a matrix. Due to rank(kg) = m the matrix to the left has
full row rank, and there exists a K solving (18). There also exists a positively invariant set containing the origin where

the optimal control u(t) has no active constraints [1], and the closed loop dynamics are given by
z(t+1) = (A— BkoT)xz(t) + BkoC*(t) = (A — B(koT — koK))z(t) = (A — Bkrg)z(t) (19)

and the result follows due to LQ optimality of (19). O

If p = m the system of linear equations (18) has a unique solution, while there may be several solutions for p > m.
One may then take the solution given by the Moore-Penrose pseudo-inverse, [14]. The condition rank(kg) = m is not
restrictive since ko = kr.oVp = —(R+ BT PB)"'BT PAV,. 1t is sufficient with rank(B) = m and rank(A4) = n, which in
general holds if there are no redundant inputs and (A, B) is the discretization of a continuous-time system.

Theorem 3 implies local asymptotic stability of the closed loop as a direct consequence of local LQ optimality. It is of
interest to investigate non-local asymptotic stability and quantify the degree of sub-optimality. These topics are closely
interrelated and essentially depend on the cost function error that results from replacing FTx = F{'¢ + F{ o with F{ C.

Define the optimal cost function of the reduced dimension problem
Vi(z) = JoUs(Tz,Kx), Tz, Kz)+ %xTYa: (20)
and its sub-optimal cost
V() = JU;(Tz,Kz),x) (21)

Theorem 4: If ¢* = Kz, where K satisfies (17), then 0 < V(z) — V*(z) < A(z) for all z € X, with A(z) =
2T (ViF + KTFR) (U (Tz, Kz) — U*(z)).
Proof. The lower bound is due to feasibility and sub-optimality of U (Tz, Kz) in (21). Since (C*TFO + QTFl) U=

xT (V1F1 + KTF()) U and

1
JU, 0 = H(UCC)+a" (ViR + KTFy) U + E:UTYa: (22)



we have

Viz) = Vi) +27 (ViF +K'FR) U} (Tz,Kx) (23)

3

—~

&
I

m{}n (JU,Tz,Vi'z) — 2" (ViFy + KTF,) U) subject to GU < W + EyTx (24)
Due to feasibility and sub-optimality of U*(z), eq. (24) gives
Vi(z) < V*@)-2" (iF + K"Fy) U*(z) (25)

Combining (23) and (25) gives the upper bound. O

Let X be the set of stabilizable initial states, i.e. those z(¢) for which there exists a U such that GU < W + EoTz(t)
and Joo (U, =kLQTtN|t) —KLQTt4N+1Jt5 -, (1)) is finite.

Theorem 5: Suppose X is compact, N is sufficiently large, the largest singular value &(F}) is sufficiently small, and
¢* = Kz where K satisfies (17). Then for all z(0) € X the origin is an asymptotically stable equilibrium point for the
system (1) in closed loop with (16).

Proof. The proof is similar to [7], [15]. Let 2 be the maximal admissible set for the system z(t+1) = (A — Bkrg)z(t)
with the constraint set X = {z € R? | ymin < CT < Ymaz, Umin < —kLoT < Umaz}, as defined in [16], [1]. Such a set
with non-empty interior exists because X contains the origin in its interior and @ > 0. Since N is sufficiently large, the
compactness of X implies that there exists a feasible Ug (T'z(t), Kx(t)) such that x, .y € 2, [1]. Because Q2 is positively

invariant [16], there exists a feasible U at time ¢ + 1 and from standard arguments

V¥a(t+1) = Vi(@(t) < V(et+1) =V (a(t)
= V(z(t)) = V*(x(t)) = 2" ()Qz(t) — u” () Rul(t)

< A@®) - 2" (B)Qx() (26)

From (17) and KoT — K = H 'F{ Vi —H Y FIVE+ FIVE) = —H 'FEVT it follows that || K||2 < ¢&(F}) for some
¢ > 0. Since 7 (F}) is sufficiently small and @ > 0, it follows from Theorem 4 that for z(¢) ¢ Q, V*(z(t+1))—V*(z(t)) < 0.
Recall that A(z(t)) = 0 for 2(t) € Q and Q is positively invariant such that V*(2(t+1)) = V*(2(t)) < —2TQz for = € Q.
Hence, the closed loop is asymptotically stable. O

If the method suggested above leads to unacceptable performance degradation or loss of stability, one may augment
the state-space projection T with appropriate rows from the right factor of the SVD of the F matrix, as this will reduce
the error made when replacing F7z by F{l z, and hence improve the performance.

Example, continued. Let the LQ cost function be given by @ = diag(100, 100, 10, 10,400, 160) and R = Isxo.
Recall that p = m = 2 and the dimension of the mp-QP parameter space is reduced from n = 6 to 2p = 4. This
leads to a reduction in the number of regions in the partition generated by the mp-QP algorithm [6] from 4279 to 1253.
Evaluating the resulting PWL functions via binary search trees as suggested in [11], the maximum number of arithmetic
operations per sample is reduced from 402 to 188 and the required computer memory is reduced from 814 kWords to

36 kWords. The results of a Monte Carlo simulation over 469 random initial conditions that give admissible trajectories
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Fig. 2. Results from Monte Carlo simulation.
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Fig. 3. Feedback structure II.

in the set X = [—0.75,0.75]* x [~1,1]? is shown in Figure 2. The histogram shows the relative cost (100 % means that
the optimal cost is achieved, and less than 100 % indicates sub-optimality). Sample curves reported in [17] indicate that

the performance degradation is not prohibitive. O

IV. FEEDBACK STRUCTURE II

Consider the feedback structure II shown in Figure 3. It contains an inner linear feedback that is pre-stabilizing and
LQ-optimal for the unconstrained system, similar to [13], and a PWL outer feedback defined on a sub-space of the
state space. The outer loop is designed by solving an mp-QP similar to (8)-(9) to modify the unconstrained linear LQR
feedback such that the constraints are fulfilled to some tolerance. Using arguments similar to Theorem 2, the number of
non-zero singular values of S equals the rank of the observability matrix of the system (A — Bkrg, C'). We notice that
in this case any structural properties of the system (A, B, C) will typically be lost due to the LQ feedback, and only
in special cases will the observability matrix of the system (A — Bkrg,C) not have full rank. However, one may still
exploit projections to derive a reduced-dimension mp-QP if small violation of the constraints are allowed. This is easily

achieved by defining a threshold on the singular values of S such that the constraints (9) are equivalently represented as
Gz < W+ Sé+e(x) (27)

with &€ = Toz, Ty = Vi, So = UpXo, where Uy, Vg, Xo are the sub-matrices of the SVD S = USVT corresponding to
singular values larger than a given threshold og > 0. Likewise, e(z) = UlTEl VlTa?, where Uy, V1, ¥ are the sub-matrices

of the SVD corresponding to singular values that are not larger than oy. In general dim(¢) < dim(z), and a uniform



bound on ¢ follows directly from properties of the SVD [14]:

Lemma 2: Let o4 be the largest singular value of S that satisfies oy < 0g, and assume X C R” is a compact set. Then
maxzex ||e(z)||2 < o maxex ||z]|2. O

Hence, the term ¢ in (27) will be uniformly small if the threshold o is small, and may be neglected if small violations
of the constraints are tolerated. This suggests the following reduced-dimension mp-QP, defined on the projection of X

onto the sub-space spanned by the rows of Ty, = = {¢ | £ = Toz, z € X}
1
Ve(§) = min §ZTHZ (28)
’ z
subject to Gz < W + 5p¢ (29)

The receding horizon control is chosen according to

u(t) = urQ(t)+ 2,0(£(1) (30)
where 25 (&) denotes the m first components of the vector z5(£) that solves (28)-(29). When using the SVD, appropriate
scaling is important. Essentially, the inequalities should be scaled according to some prioritization of the constraints.

As shown in the following lemma, the solution to the reduced mp-QP equals the solution of the original mp-QP, when
restricted to a sub-space of the parameter-space.

Lemma 3: Define the sub-space L = {z € R* | VTz = 0}. Then z*(z) = z(Tox) for all z € L.

Proof. Follows by inspection of the explicit PWL solutions [4]. O

Corollary 1: The number of full-dimensional critical regions defining the PWL solution to the mp-QP (28)-(29) on =
is not larger than the number of full-dimensional critical regions defining the PWL solution to the mp-QP (8)-(9) on X.

Proof. The result follows trivially from Lemma 3, as every full-dimensional critical region in the solution to (28)-(29)
is also a full-dimensional critical region in the solution to (8)-(9), restricted to the sub-space L. O

Corollary 1 shows that the complexity of the solution to the reduced problem is never larger than the complexity of
the solution to the original problem. In fact, Lemma 3 strongly indicates that the complexity is typically smaller, since
the solution to the original mp-QP (8)-(9) typically contains full-dimensional critical regions that do not intersect L.

Let X be the set of stabilizable initial states for the system (1) subject to the constraints (29), i.e. all z(t) for which
there exists a z such that Gz <W + SoToz(t) and Juo(z — H *FT2(t), —kro®is Nty —kLQTt4 N41)ts -, (t)) is finite.

Theorem 6: Suppose X = X, is compact, N is sufficiently large, and ¢ sufficiently small. Then for all (0) € X the
receding horizon control (30) in closed loop with the system (1) makes the origin asymptotically stable.

Proof. Define the perturbed mp-QP
1
Vio(r,e) = min 52TH2 subject to Gz <W + Sz —¢ (31)

with the property V(z) = V*;(x,0). Assume without loss of generality that the mp-QP is not degenerate at z (see
[4], [6]) and moreover that z is an internal point of some critical region. Then Corollary 3.4.4 in [18] gives for € in a

neighborhood of the origin

DV = @) (52)



10

For ¢(x) sufficiently small (due to o sufficiently small):
e=e(z) o
Violw,e(x)) = Vix) = Vi(,e(x)) = Vi(z,0) = / 5c V0@ e)de = AT ()= (x) (33)
’ ’ ’ e=0 e
If z is not an internal point, (32) does not hold. Still, because V;* and V}, are continuous function and (32) fails to

hold only on a set of measure zero, we argue that (33) holds for all z € X. Eq. (33) thus provides an upper bound on

the sub-optimality
Vio(z,e(z)) < VI(x)+ ool (34)

see Lemma 2, and we have defined A\ = max,¢x ||A()||]> which exists because A(x) is PWL on the compact domain X,
[4]. Since oy is sufficiently small, asymptotic stability follows using standard arguments similar to [7], [15]. O

It may be a requirement that certain constraints are not allowed to be violated. This is often the case for input
constraints, which are usually physical limitations rather than operational constraints. In order to fulfill hard input
constraints with the receding horizon control (30), information about urg(t) is sufficient:

Lemma 4: If span(krg) C span(Typ), then Sy in (29) can be chosen such that the input constraints wm, < u(t) < Umaa
are satisfied at the optimum for any z(t) € X.

Proof. Let the sub-matrices G, W and S correspond to the constraints i, < u(t) < Umaz in the form

Gz(t) < W+ Sxz(t) (35)
It is straightforward to see that
é _ I xm Omxm(Nfl) ’ V~V _ Umaz ’ 5' _ k'LQ
—Imxm Omxm(Nfl) —Umin _kLQ

since S = E 4+ Ko and E = 0 for input constraints. Now consider the corresponding sub-matrices of the reduced

constraints (29), i.e.
Gz(t) < W+ 8p(t) = W + SoTox(t) (36)

The result follows since the reduced and original constraints can be made equivalent by the choice ST = (Xt —xT),
where X € R™*? is a matrix such that XTy = krg. X must exist and be of rank m since span(krg) C span(Zp). O
According to Lemma 4 the rows of the projection matrix should include the (scaled) rows of k¢. In order to minimize
violation of the state constraints, we suggest the following procedure to choose additional rows in the projection matrix
such that it includes the most significant directions of the orthogonal complement of the sub-space spanned by k. Let
the rows of ka contain a basis for null(krg). Assuming without loss of generality that k¢ has row rank m such that

its null space basis ki‘Q has rank n — m, we define

k'LQ

L
kLQ
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Fig. 4. Results from Monte Carlo simulation, without hard input constraints.

Hence, S = Dikrg + ngfQ where Dy contains the m first columns of D and D5 the last n — m columns. Consider the

SVD ngi‘Q = UXVT which gives Sz = Sp€ + e where

kro
So = (D1, Upo), To= (38)
V'OT
and e = Uy 31 V,Tz where Uy, X9, Vg and Uy, %,V are as above. With 8 = Tox, this leads to the following mp-QP
1
*5(£) = min izTHz, subject to Gz < W + Sy (39)
’ z

Example, continued. With the same LQR criterion and input parameterization, the S matrix has the following
singular values: 64.0025, 32.2419, 5.6246, 2.8686, 1.2025, and 1.0842. Assume we neglect the two smallest singular
values, which yields an approximate mp-QP defined on a 4-dimensional parameter space. The number of regions in the
PWL feedback laws are 4279, 1930 and 1936, respectively. Hence, there is significant complexity reduction. The results
of Monte Carlo simulations starting from 469 random initial states that give admissible trajectories in X are shown in
Figures 4 and 5 for the cases without and with hard input constraints, respectively. The histograms show the relative
change in cost (100 % indicates optimality), and maximum constraint violations. Notice that the ratio between the
largest and smallest singular values is fairly small, such that some constraint violations and performance degradation

appear in this example. Sample simulations are given in [17].

V. CONCLUSIONS

Methods for reducing the dimension of the parameter space of mp-QP problems associated with the explicit PWL
solution of constrained LQR problems are investigated. It is shown that for systems with certain properties such
dimension reduction can be achieved by state space projections that leads to mp-QPs that require less offline and online

computations, and computer memory. Examples indicate that the performance degradation may be acceptable.
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