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Abstract— This paper considers the estimation of states and MHO uses finite moving horizon data window to extract the
parameters of a Single-Degree-of-Freedom (SDOF) vibration jnformation from the actually measured and past measured
model in nanopositioning system based on a nonlinear Moving data. The MHO [7], [8] is the alternative to particle filter

Horizon Observer (MHO). The MHO is experimentally tested L . .
and verified on measured data. The information about the statistical methods (PF) [9], [10] and minimum-variance

displacement and speed together with the system parameters (EKF) methods. The paper compares the MHO performance
and unmodeled force disturbance is estimated through the with the EKF.

Sequential Quadratic Programming (SQP) optimization proce-

dure. The MHO provided superior performance in comparison Il. BASIC MODEL FORMULATION

with the benchmark method Extended Kalman Filter (EKF) in

terms of faster convergence. The structural vibration model can be written as

I. INTRODUCTION MoG+ Cog+ Kog = Lofo 1)

Improvement of machine precision motivates the developvhere M, is the mass matrix(C, is the damping matrix,
ment of new solutions for canceling the noise and vibrationg(, is the stiffness matrix/, is the transition matrixg is
The nanopositioning is a state of art of precise mechanitse displacement vector anf} is the excitation force. It
where the vibration attenuation and control problems chatonsists of known force inpuf and unknown force input
lenge the computational hardware and software as well & and is written asf, = [f, f.]?. The transition matrix
overall mechatronic design [1]. Model-based controllers de- consists of the transition matrix for known force input
pend on parametric models where the states and parameterand transition matrix for unknown force inpilt,, Ly =
can be estimated through observers. [L, L,]. The applied forces through the actuators are modeled
The classical on-line approach to determine the state aad f = Cu, where the matrixC' = diag(c), the vector of
parameters is in vibration mechanics the Kalman filter andain parameters of the actuatorscis R andu € R™« is
its modified version for nonlinear systems, the Extendethe vector of input variables of the actuators. Conventionally,
Kalman Filter (EKF) [2]. The foundation of such filtration the state-space equation can be represented as
is the model of the vibrating structure based on the lumped

parameter model assumption [3]. The typical application &s = Az, +Butw @)
of filtration of state and parameters is the control [4], q 0 I
diagnostics and monitoring of vibrating system [5]. TheWhere Ts = { q ] , A= { —Mo‘lKO —Mo‘lco } ’
EKF provides sub-optimal estimates due to the linearization, 0

and additional sub-optimality follows from model errors and - M(;lLC , G= MglLu w=Gfu

violation of the Gaussian white noise assumption. Moreover, An augmented state vecterc R*"«+"» can be defined
the method is sensitive to the initial condition and may not ' T
converge. z = [zs,p]" = la,4d,pp, ;W] 3)

The objective and novel contribution of this study is thQNherep € R™ is the vector of uncertain model parameters
experimental application of nonlinear least-squares estimﬁ- (e.g. stiffness, damping parameters), unknown gain pa-
tion of states, parameters and force disturbance of ”anOF}‘g'metersC and unknown state disturbances The number
sitioning device with MHO [6]. While the EKF accumulatesof modes isu,, andn, is the total number of unknowns to be
past history measurement information in the a priori estimat@engified. A common procedure is to include a process noise
of the state and the error covariance matrix estimate, thgior in Eqg. (2) which accounts for random and unmodeled
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zp € R™.The model which was linear-in-the-states becomesheret = 1,2, .. .. This one step prediction gives an a priori
nonlinear by declaring the unknown model parameters atate estimate. The time update of the covariance matrix

additional states of the system. estimate is given by
Eqg. (4) and (5) can be combined as .
P=2Z(3)P+PZ"(&)+Q (14)
&= folz,u) + 2 (6)
where
where f. : R?"atm x R™ — R?t" represents the 2(3) = Ofe(x) (15)

augmented dynamics and = [z5,2,]7. The observation Ox

equation may be written as

T==T

and @ is a spectral density matrix, wherg = %Qt. The
y = he(z,u) +v (7) covariance matrix estimate of state vectr estimation

_ error is achieved by simulative propagation of Eq. (14)
wherey € R™ is a vector of measurements amd :

R?matm» x R™ — R™ is a continuous measurement Pr=g(Pr,, Z(3] ) (16)
function. The measurement errors are modeled with the noise ) S )
term v € R™. The most frequent situation encountered h® EKF gain matrix is in time instarit
in practice is when the system is governed by continuous- T T -1
. . ; . Ky=P L; |L,P" L MRy M. 17
time dynamics and the measurements are obtained at discrete 0= PULi (LB Ly + MR M) (47
time instances. For the problem formulation we consider thgng the measurement is used for state vector estimation
numerically discretized dynamic nonlinear system describqg posteriori estimate)
by the equations

A+ A— A—

& =2y + Kilye — h(2,)] (18)

Tev1 = [z u) + 2 (8) . . S _
v = hz,w)+ v 9) The covariance matrix a posteriori estimate is updated as

for t = 0,1,..., wherez, € R™ is the augmented state P =1 — K;L P [I — K¢Ly]" + K, MR M] K[ (19)
vector,u; € R™ is the input vector and; € R"= is the

process noise vector. The state vector is observed through Wéere

N . . L. = Oh(z+) 20
measurement equation (9) wheges R™v is the observation t = Toux, —_— (20)
vector andv; € R™ is a measurement noise vector.
_ Oh(=zt)
M, =
Ill. EXTENDED KALMAN FILTER K L P (21)

The EKF is perhaps the most often applied algorithm foThe presented EKF algorithm will be generally noticed as
the estimation of state and parameters of nonlinear dynamic - -
systems [2] and it will be considered here as the benchmark 1 = fr(yesr, 37, ut) (22)
algorithm. The following algorithm is in the literature known

_ . 2nq+n Ny, 2ng+n
as continuous-discrete or hybrid EKF [2]. The dynami(;Or £ =0.1,..., Where fp : Rty x Rt — R

system is given by (8) and (9). The main assumption aboﬂw?lﬁrgzel?stztghe EKF dynamics and its shorter notafjit:)

the process and the measurement noise is that they have
the white noise properties, i. e. sequentially uncorrelated IV. M OVING HORIZON OBSERVER ALGORITHM
Gaussian distribution with zero mean
In the basic moving horizon estimation formulation
2t~ N(0,Qt)  ve~N(0,Ry) (10) the statistics of the process and measurement noises

. . . . . zy, vy are assumed unknown. The function composi-
whereQ; is a process noise covariance matrix aRdis a . o .
tion as the application of one function to the re-

measurement noise covariance matrix. The initial conditioguItS of another like f(f(x w ), ) and
of the state vector iy ~ N(&7,P;"). The estimate of h(f( ) ) Carffévé \;v;i]t\;e’n tgsj\][fztlfNJrl o
the state vector at = 0 begins with the initial state vector utﬁit_N’ut_gn’du‘;ujff;H s spectivel
estimate and with the initial covariance matrix of the initialf (2e-n) ° f (i) bectvery.

N where ‘0" denotes function composition. Th¥ + 1 sub-
state vector estimation error

sequent measurements of the outpgteind inputsl; up to

ja- = E[xo] (11) time ¢ with the N + 1 measurement noise vectby is
Po+ = Ef(zo — 573)(500 - ig)T] 12) Yt—N Ut—N Vt—N
Yt—N+1 Ut—N+1 Ut—N+1

From time instance — 1, the dynamic system (6) is simu- Yy, =
latively propagated one step ahead as

A At Yt Ut V¢
&y = f(& 1, ue—1) (13) 23)



N + 1-window

wheret = N+1,N+2,.... Neglecting process noise in the
basic MHO formulation, following algebraic map is defined

TN st icti
p model prediction R
RN (24N ) & n—1ji—1 | Be-nNe — Ty_g)t Te—1)t Teft
hUt=N+1 o fUt=N (g, N G W™ el WU
Hy(ze_n,Up) = i u-nN-1 ||ui-N g Ut—1 Uy
. Yt—N Yt—2  Yt-1 Yt
_ _ N-st t-filtrati N N
h¥to ft=1o.. . o f=N(x;_N) 1 jtt]vj\tep*pos e Iogr—z\t Iztl\t Yﬁt
Y; = Hi(ze-n,Us) + W (24)
Define theN-information vector at time Fig. 1. Time sequences of state, input and output variablea/ i 1
Moving Horizon window
T T T T
It:[ytha"-vytauthv'-'aut] (25)
The observer design problem is to reconstruct the vector “‘ Dynamical system vt
z;_ based on the information vectdr. The basic formu-
lation of such a prob|em is defined as the inverse mapping P [ S :
of Eq. (24). The unique existence and continuity of the Y, :
solution depends on the functidiy. If the Eq. (24) does not Datapool Uy
have unigue solution, the problem is ill-posed according to _
. el . .. Tt N—1|t—
definitions of [11]. The solution of vectar,_ is in the case : ey
of uniform observability formulated on an over-determined U, ,| Prefiltration B
. . . B St— t
set of algebraic equations where there are more equations : 27"
than unknowns for which, < Nn,. The formulation can ' :fN‘, ..................
be under-determined if there is no persistence of excitation, : | — “vf)
or the system is not observable [7]. | d]\lf 'Steg_ i Y i |
The cost function of the MHO optimization problem is in Eﬂ moce fpre iction | Til
the meaning of the least-squares method defined as N Cost function 7%
: 4 minimization I
A - - 2 % 2 : : i
Jos(@e-nie 1) = 10— nje = Ze-npells + ol Ye - V2] (26) R ——— Optimizer | |:
subject to the state constraints N N-step L,
i LNl post-filtration :
where Fig. 2. Algorithm scheme of Moving Horizon Observer where! is a

one sample delay operator

hut—N (i't—N)

A BN o fHN (3 )
Vo= Hy(3-n,Up) = : The covariance matrix is computed according to Eq. (31).
hut o fut-1o . o fut-~(3_x) The other matrix computations necessary for the pre-filtration

(28) are done via regular EKF equations as explained in Section

The cost function (26) comprises of two squared normBl (index ¢ changes ta — N|¢ and indext — 1 changes to
where the first norm is weighted by th& matrix. The t—N—1[t—1). The only difference is that the EKF equations
contribution of theN-step model response to the optimizedhere are applied for the first time instance NV of receding
vector 7,y is expressed through the second norm weighvindow. Note that with this pre-filtration the stochastic
parameter. The first term in the given formulation can beproperties of the process noise and measurement noise is
used to estimate the arrival cost [8], [12]. assumed known. Also note that neglecting process noise in

The a priori state estimate used in the arrival cost 428) may lead to accuracy loss, and is made for reduced
the beginning of the horizon is declared as y|; and is computations. The post-filtration is further performed to
computed in a time instaritfor the time instancé — N by ~ Propagate the state to current time instance
pre-filtration with an EKF [12]. The EKF is running at the The schematic time sequence of the a priori state estimate
beginning of horizon on the output data_x which were Vvector (z), state estimate vector§t), post-filtered state
measured in the— N time instance. This is the information estimate vectorsi*), input (u) and output(y) vectors on

which corrects the one-step simulation N-horizon are in Figure 1. The MHO algorithm, schemati-
o . cally shown in Figure 2 consists of three main computation
Te Nt = f@-N—1je—1,wt-N-1) (29) parts: Pre-filtration, Optimizer, and-step post-filtration.

The a priori state estimate at the beginning of the horizon j§"€ Optimizer containsV-step model simulation and Cost
computed as function minimization blocks. The main computation engine

is the optimization algorithm that performs the cost function
Te-nje = &, npp + Keonpelye-nv — h(@_ )] (30)  minimizations. The MHO algorithm with pre-filtration can



P;:N\t =[I- Kt—N\tLt—N\t]Pt:N\t[I — Ky npLeonp) " + Kt—N|tMt—N\thMtT,N|thT,N|t (31)

be summarized into following steps: Matlab functionode? is used (the explicit Heun’s method).
St. 0. Load the initial Datapool with measurement datdhe ode2 procedure for calculating the numerical solution
and input data to the initial value problem defined by the deterministic part
St. 1. Obtain the actual output measuremgntinputu,  ©f EQ. (6)@ = fc(z,u) with the initial conditionz is
and update the. Datapool . Fior = x4 hfo(zi,w) (33)
St. 2. If the current time instance is= N + 1, set the h
initial values forz, \ and Py (as in the case of virr = @i+ 5 (felwnw) + fo(@ip,w)  (34)

EKF Eqg. (11),(120)517[ Then according to Figure 1:
i:aN = Zgny (this value is set by the user)
Else fort > N + 10 &F | = & n_1t-1
(this value is set from the last optimization run)
St. 3. Compute the a priori estimate with Eq. (29)
St. 4. Numerically integrateP;NIt (as in the case of
EKF Eg. (14) through Eq. (16))
St. 5. Compute the EKF gain matrik,_ |, (as in the

where i represents the numerical step index ands the
numerical step size. It can be seen as an extension of the
Euler method into a two-stage second-order Runge-Kutta
method. Heun’s method is a predictor-corrector method with
forward Euler’'s method as predictor Eg. (33) and trapezoidal
method as corrector Eq. (34) [13]. This method was cho-
sen after some experimentation with a set of solvers. The
case of EKF according to Eq. (17)) preci_sion of the numerical _soll_Jtion of a given_ solver as a
St. 6. Compute the a posteriori state estinﬁq"[e with function of numerical step size is evaluatgd durmg the run
o - NIt of the EKF. In our case, the solver which gives the best
Eq. (30) wherez = Ty~ (Block in Figure g herformance (smallest filtration errors) with other EKF

/ X th‘t
2: Pre-filtration) settings unchanged, is chosen.

St. 7. Minimize the cost function (26) to numerically
compute the optimal state vector at the very be- V1. EXPERIMENTS

ginning of receding windowt; ;. In the mini-  The presented MHO algorithm is experimentally tested on
mization routine the model is used through the Ecthe transient vibration motion data from the nano-positioning
(28). The initial condition for the optimization is stage shown in Figure 3. The system dynamics is perturbed
@T}im = Zi_Nit- by the force generated in piezoelectric actuators forcing
St. 8. Use the EKF to estimate the state from the begifthe stage to move and vibrate around constant reference

ning of receding window to the end of recedingdisplacement value. The transient vibration is triggered by

window as sudden removal of the payload (of a priori unknown weight)
4+ = NG (g et ) attached to the vibrating system which is being excited by
t=N+ilt — JF E= N t—N+(i—1)\(3’2) the actuator force. The goal is to estimate the state-space

vibration model around the first resonant frequency of the
system, before and after the removal of payload and also
during the transient.

wherei; = 1,2,..., N. The initial condition for the
first step { = 1) is :E::N‘t = &_nyp. (Block in
Figure 2: N-step post-filtration)

End of loop; Go to Step 1. A. Model of Mass-Spring-Damper system
The numerical nonlinear programming solver will be dis- For a Single-Degree-of-Freedom vibration system
cussed later in the context of the experiment. (SDOF), the equation of motion may be represented as
follows

V. ODESOLVER USED BYEKF AND MHO - mii(t) + ba(t) + kg(t) = fo(t) (35)
In both studied approaches (EKF, MHO), the propagation i _ ) i

of filter dynamics in Eq. (13), (14) and the propagationThe gtate-space mpdel consists of an_ordmary differential
of observer dynamics in Eq.(29), (28) is required througauation system with the mass [ke], displacemeny =
the numerical simulation. Since variable-step solvers cannét [#ml]; SQpeedq_ = 23 [pm.s™7], external forcef = cu
be used for hard real-time applications required to mairi&e-+m.s~ "] applied through the piezoelectric actuator and
tain a fixed processing time, this study is based on fixed"known force disturbancg, [kg.pum.s~7]
step solvers. Any of the fixed-step continuous solvers caf j; 0 1 z1 0 0
simulate a model to any desired level of accuracy, giverF To } - [ _k _b ] [ T } + { < ]UJF { 1 lfu
a small enough step size. Unfortunately, it generally is not " 36)
possible, or at least not practical, to decide a priori whicithe voltage input for the piezoelectric actuatoris[V]
combination of solver and step size will yield acceptablend the state vector is = [z, 22,23, 74,75, 26]7, With
results for the continuous states in the shortest time. Denknown parameters (variablésym = 3 [s72], b/m = 24
termining the best solver for a particular model generallys—!], ¢/m = x5 [pum.s~2.V~!] and f,/m = w = w6
requires experimentation. In the following experiments thgum.s~2]. For the optimization computational purposes the

m m m



the payload, the natural frequency js& = 483[Hz| and
damping ratio(, = 0.0143. The input excitation signal for
the piezoelectric actuator is a Pseudo Random Binary Signal
(PRBS). The PRBS was designed to concentrate most of its
energy around the first resonant frequency of the system.
For parameter identification it is considered good practice
to concentrate signal power in the frequency domains that
contain peaks in the sensitivity functions [14]. This is done
in order to maximize the information content of the signals
used through additional filter that is chosen to be a band-pass
filter [15], using a first-order high-pass filter with lower cut-
off frequency off;. = 100[Hz], and a resonant second-order
low-pass filter, with natural frequency ¢f, = 450[Hz|, and

Fig. 3. Nanopositioning stage with highly resonant vibmatitynamics @ damping ratio of, = 0.1. The filter
s (27 f)?

W,(s) = ,
dynamics is partly scaled by state, input and output scales ) 5+ 21 fie 5% + 20 fus + (27 fn)?
where the new variables are introduced &gs; = z;, applied for the input and output data, emphasizes the fre-
zifsi = 27, u/sy = u®, yi/sy = y; andv,/s, = vi. The quency content close to the resonant peaks of the two
system defined by Eq.(36) is with the process noise rewrittefonfigurations, with and without payload.

in the nonlinear, scaled and augmented form as The MHO and EKF algorithms are tested on the data
s 52 o which are measured in advance. The speed signal is fur-
=t A ther computed for validation purposes by differentiating the
= —@xgxf  samia + ﬁxgus n 8_6968 42 displacement signal as
] s 825 S. 5.8 8. 5.8 525 52 Y, — Yt+1 — Y1
T3 = 23;Xy = 245 T5 = 25, Tg = Zg (37) “="r (39)

where only the displacement is measurablp s1) whereT, is a sampling period[, = 10~*[s]. In this equation

we use the measured displacement signal one sample ahead
which is only possible with the off-line computations, in
This model formulation given by Eq. (37) is used for theorder to avoid phase loss errors.

EKF state estimation Eq. (18), EKF pre-filtration Eq. (30)

and EKF post-filtration Eq. (32) with process noise = C. Extended Kalman Filter setup

(21,23, 25, 24, 25, 2§]" defined by Eq. (10). However for  Good tuning of the EKF depends on precise information
the MHO model output propagation given by Eq. (28), &pout the stochastic properties of noises. The scaling factors
deterministic formulation is used where= 0. The fixed gre set ag, = 5; sy = B; 51 = s, 52 = 10% s3 = 7.105;
numerical step for numerical integration of Eq. (37) is settQ, — 7.1(: s; = 8.10% s5 = 10° such that the states and

- h gives T — i ( ;
h =1.25.107°[s], which gives 7= = 8 computational steps parameters have approximately the same order of magnitude.
of the ODE solver per sampling interval. The measurement noise standard deviation of displacement
capacitive probe is estimated ag = 10~3[um] where the

) _measurement noise covariance (matrix) is defined as
The experiments are performed on the long-range serial-

kinematic nano-positioning stage from easyLab (Figure 3), Ry = (0y/5y)? (40)
where vibration along the y axis is considered. The other Caiver o )

used hardware is a Piezodrive PDL200 linear voltage ar'd S€t toR; = (107%/5)*[.um”]. The process noise spectral
plifier (20 [V/V]), a ADE 6810 capacitive gauge and ADE density matrix is

6_501 capacitive probe from ADE Technologies to measure Q = diag [®;, By, B3, Bs, D5, Bg) , (41)
displacement (5/m/V]), and two SIM 965 programmable

filters from Stanford Research Systems, used as reconstrudiere the diagonal noise spectral densities are defined
tion and anti-aliasing filters. The actuation signal and meand computed a; = 1/74(0;/s;)?. The standard de-
sured response was generated and recorded using a dSPAGHIon o; is estimated by user's assumption about the
DS1103 harware-in-the-loop board, at a sampling frequencgagnitude of process noise of given state or parame-
of 10 kHz. More details about the actual hardware setup cder of a discrete (sampled) time sequence. After some
be found in [14]. From the frequency response data, reportédand tuning”, the numerical values; = 1072[um],

in [14], it was found that for the case with the payloadr, = 10%[um.s™!], o3 = 10*[s7?], o4 = 5.1072[s71],
attached, the natural frequenty= ,/z3/2r = 423[Hz and o5 = 103[um.s 2.V~!], 06 = 10*[um.s~?] are found
damping ratial; = z4/2./x3 = 0.0146. For the case without to give optimal performance. Th&; spectral density is

Yp =T+ Ug (38)

B. Instrumentation and Experimental Data



.. . . —3 3
based on standard deviation, sampling time and scale com- RSE 21 x 10 22 x 10

puted as®; — 10%fs—1](0.01[m]/5[—])2[um?.5—2.Hz—1], Mioa  Oesy  siom
where the other spectral densities are similarly com- MHOb 1.233 5.454
puted. The initial state vector estimate is seti#y = TABLE |
[0/81,0/82,6.106/53,70/84,5.105/85,0/56]T. The initial ROOT SQUARE ERROR
covariance matrix of the initial state vector estimate error
is
x10™

Py = diag [£1,0, %20, £3,0, £4,0, X5.0, D60, (42) 1:
where the diagonal elements are in accordance g °°
Eq. (12) computed asy; = ((wio — Elzig)/si)? = °f
and by initial conditions set as Yiq = &
(Lpm]/5[=])*[pm?], Sa0 = (103/10*)2[um®s72), |
Sao = (1.105/(7.100)2[s7%], S0 = (1/(7.10))%fs72], =7° " Fioa
S50 = (L10°/(810%))[um?s ™4V, Seo = | | | | | | |
(1/ 105)2 [NmQ .874] “o 500 1000 1500 2000 2500 3000 3500 4000

To prevent negative parameters, we use an ad hoc clippi  ** .

strategy in which negative filtered values of parameters a—- E%Q 1
set to zero. ! )

D. Moving Horizon Observer setup

To [um.s

To minimize the cost function Eq. (26), Matlab’s con-&-,
strained optimization functiohni ncon is called. This soft-
ware minimization routine is set as a nonlinear programmin
method known as Sequential Quadratic Programming (SQ % s0 1000
[16]. The first stopping criterion for this method is a relative
toleranced; on the cost function value where the iterationsrig. 4. Dpisplacement and speed errors of the EKF and MH©Oz- (1)
stop if |J(z;) — J(zit1)|] < 65(1 + |J(=z;)]). The other
stopping of the optimization metric i%,, which is a relative
bound on the size of a step, meaning iterations end whéh Experimental results and discussion

|2 = @is1| < 05(1 + |2i]). These parameters are set as o quality of the algorithms is evaluated by the Root

— -5 — —6
5:] o 2.10 and_5z = 1077 The_ SQP parameters thatSquare Error (RSE) computed for each state as
significantly contribute to the precision of the method are

maximum §,,., and minimuméd,,;, change in variables

for finite-difference gradients. These parameters are set as RSE;; = |ejl| =
Omaz = 0.1, dmin = 10~%. Finite differences, used to
estimate gradients, are computed with central method. Th . - - . -
number of fixed iterations and the number of functioerV%er;] = 1,2, n = 4000, ey = g — &1 ANdery =
evalu.atlonsofthe SQPis |mpI|C|tIyI|m|ted throughthg abqv The EKF and MHO are run with setups presented in
mentioned parameters. The maximum number of iterations

) . revious subsections. The qualitative results are summarized
can be considered as one of the tuning parameters for the

amount of filtration. The following equation for the matrix rough the RSE |_ndex Eq. (44.) of displacement _and speed in
is motivated by [12] Table I. The filtering/observation accuracy of displacement

and speed is in this study taken as the main criterium
S — RP! (43) to evaluate the algorithms. According to this criterium the

MHO, in comparison with the EKF has shown improved
Two settings of the parametarin the cost function Eq. (26) performance with certain trade offs. The ratio between the
are going to be considered: = 1 (MHOa) andae = 10" pre-filtered information (Lst norm in Eq. (26)) and model-
(MHOD). The length of the horizon is set ¥ = 15 that optimized information (2nd norm in Eq. (26)) expressed
captures one oscillation period. THe matrix Eq. (43) is by parametera, is one of the main tuning parameters of
time-varying sinceP = P,* ., Eq. (31). The values aR;, MHO algorithm. The value of parameter is a tradeoff
Q@ and POT y are set according to Eq. (40), (41) and (42). between the accuracy and parameter variance as we can

The computational efficiency is a key factor when it comefurther see. The comparison of EKF and MHOa is shown

to real-time processing application with DSP, CPU or FPGAthrough the displacement and speed errors in Figure 4. The
Computationally fast and efficient methods of function minestimation of parameters and the disturbance is shown in
imization, in the range of microseconds, based on SQP-typégure 5. In these figures the parameter= 1. The
algorithm for real-time applications are proposed in [17]. comparison of displacement error and speed error of EKF

2
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Fig. 6. Displacement and speed errors of the EKF and MHOb:(10~4)

and MHODb is shown in Figure 6. The estimation of param-
eters and the disturbance is shown in Figure 7. In these
figures the parameter = 10~%. The presented figures
demonstrate faster convergence of MHO compared to the
EKF during transient. The acceleration disturbafigés also
estimated, which accounts for the force disturbance caused
by the sudden removal of payload, also seen in Figure 3.
Greater variance of estimated parameters given by MHOa
is documented compared to MHOb. This is caused by a
process noise that in pre-filtration and post-filtration part
we consider to have Gaussian properties, but in moving
horizon (model-optimization) part we are not modeling the
uncertainty, leaving the deterministic model representation,
through parameters, to reflect the unmodeled dynamics. This
reflection of unmodeled higher order modes or perhaps
nonlinearities in piezoelectric actuators is more evident for
MHOa where much stronger trust is put on the deterministic
model-based observer part through parametéthe unmod-
eled process noise is closely related to a problem being ill-
conditioned, when a small unmodeled disturbance causes a
great change in parameters. This is highlighted in parameter
estimation figures where greater variance of parameters is
presented in MHOa setting in Figure 5 compared to MHOb
setting in Figure 7. In this problem formulation, theis

a tradeoff between the state estimation error and parameter
variance. The tuning of parameteris a "generate and test"
procedure, wherex = 10~ is the acceptable setting. The
overall computational time is significantly faster in the case
of MHOb when the optimization is running only when there

Qa

IS a potential to improve the estimates, where in the case
of MHOa the iterations are running only to overfit and to
model the noise through great variance of parameters.The
main advantage of the MHO is that the nonlinear model
leads to faster convergence of parameters and more accurate



displacement and speed estimates during the transient.
This paper presents the state and parameter estimation
of a Single-Degree-of-Freedom (SDOF) vibration dynamic
10 system, however the proposed moving horizon observer
can be applied also to a Multi-Degree-of-Freedom (MDOF)
vibration system.
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