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Abstract— This paper considers the estimation of states and
parameters of a Single-Degree-of-Freedom (SDOF) vibration
model in nanopositioning system based on a nonlinear Moving
Horizon Observer (MHO). The MHO is experimentally tested
and verified on measured data. The information about the
displacement and speed together with the system parameters
and unmodeled force disturbance is estimated through the
Sequential Quadratic Programming (SQP) optimization proce-
dure. The MHO provided superior performance in comparison
with the benchmark method Extended Kalman Filter (EKF) in
terms of faster convergence.

I. INTRODUCTION

Improvement of machine precision motivates the develop-
ment of new solutions for canceling the noise and vibrations.
The nanopositioning is a state of art of precise mechanics
where the vibration attenuation and control problems chal-
lenge the computational hardware and software as well as
overall mechatronic design [1]. Model-based controllers de-
pend on parametric models where the states and parameters
can be estimated through observers.

The classical on-line approach to determine the state and
parameters is in vibration mechanics the Kalman filter and
its modified version for nonlinear systems, the Extended
Kalman Filter (EKF) [2]. The foundation of such filtration
is the model of the vibrating structure based on the lumped
parameter model assumption [3]. The typical application
of filtration of state and parameters is the control [4],
diagnostics and monitoring of vibrating system [5]. The
EKF provides sub-optimal estimates due to the linearization,
and additional sub-optimality follows from model errors and
violation of the Gaussian white noise assumption. Moreover,
the method is sensitive to the initial condition and may not
converge.

The objective and novel contribution of this study is the
experimental application of nonlinear least-squares estima-
tion of states, parameters and force disturbance of nanopo-
sitioning device with MHO [6]. While the EKF accumulates
past history measurement information in the a priori estimate
of the state and the error covariance matrix estimate, the
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MHO uses finite moving horizon data window to extract the
information from the actually measured and past measured
data. The MHO [7], [8] is the alternative to particle filter
statistical methods (PF) [9], [10] and minimum-variance
(EKF) methods. The paper compares the MHO performance
with the EKF.

II. BASIC MODEL FORMULATION

The structural vibration model can be written as

M0q̈ + C0q̇ +K0q = L0f0 (1)

whereM0 is the mass matrix,C0 is the damping matrix,
K0 is the stiffness matrix,L0 is the transition matrix,q is
the displacement vector andf0 is the excitation force. It
consists of known force inputf and unknown force input
fu and is written asf0 = [f, fu]

T . The transition matrix
L0 consists of the transition matrix for known force input
L and transition matrix for unknown force inputLu, L0 =
[L,Lu]. The applied forces through the actuators are modeled
as f = Cu, where the matrixC = diag(c), the vector of
gain parameters of the actuators isc ∈ R

nc andu ∈ R
nu is

the vector of input variables of the actuators. Conventionally,
the state-space equation can be represented as

ẋs = Axs +Bu+ w (2)

where xs =

[

q
q̇

]

, A =

[

0 I
−M−1

0 K0 −M−1
0 C0

]

,

B =

[

0
M−1

0 LC

]

, G =

[

0
M−1

0 Lu

]

, w = Gfu

An augmented state vectorx ∈ R
2nq+np can be defined

x = [xs, p]
T
= [q, q̇, pp, c, w]

T (3)

wherep ∈ R
np is the vector of uncertain model parameters

pp (e.g. stiffness, damping parameters), unknown gain pa-
rametersc and unknown state disturbancesw. The number
of modes isnq, andnp is the total number of unknowns to be
identified. A common procedure is to include a process noise
vector in Eq. (2) which accounts for random and unmodeled
behavior. For the purpose of state estimation and parameter
identification the vibration dynamics (1) is described by
general time-invariant augmented state-space equations

ẋs = f̃c(xs, p, u) + zs (4)

ṗ = zp (5)

where f̃c : R
2nq × R

np × R
nu → R

2nq is given by
f̃c(xs, p, u) = A(pp)xs+B(c)u+w. The state process noise
vector iszs ∈ R

2nq and the parameter process noise vector is



zp ∈ R
np .The model which was linear-in-the-states becomes

nonlinear by declaring the unknown model parameters as
additional states of the system.

Eq. (4) and (5) can be combined as

ẋ = fc(x, u) + z (6)

where fc : R
2nq+np × R

nu → R
2nq+np represents the

augmented dynamics andz = [zs, zp]
T . The observation

equation may be written as

y = hc(x, u) + v (7)

where y ∈ R
ny is a vector of measurements andhc :

R
2nq+np × R

nu → R
ny is a continuous measurement

function. The measurement errors are modeled with the noise
term v ∈ R

ny . The most frequent situation encountered
in practice is when the system is governed by continuous-
time dynamics and the measurements are obtained at discrete
time instances. For the problem formulation we consider the
numerically discretized dynamic nonlinear system described
by the equations

xt+1 = f(xt, ut) + zt (8)

yt = h(xt, ut) + vt (9)

for t = 0, 1, . . ., wherext ∈ R
nx is the augmented state

vector,ut ∈ R
nu is the input vector andzt ∈ R

nx is the
process noise vector. The state vector is observed through the
measurement equation (9) whereyt ∈ R

ny is the observation
vector andvt ∈ R

ny is a measurement noise vector.

III. E XTENDED KALMAN FILTER

The EKF is perhaps the most often applied algorithm for
the estimation of state and parameters of nonlinear dynamic
systems [2] and it will be considered here as the benchmark
algorithm. The following algorithm is in the literature known
as continuous-discrete or hybrid EKF [2]. The dynamic
system is given by (8) and (9). The main assumption about
the process and the measurement noise is that they have
the white noise properties, i. e. sequentially uncorrelated
Gaussian distribution with zero mean

zt ∼ N(0, Qt) vt ∼ N(0, Rt) (10)

whereQt is a process noise covariance matrix andRt is a
measurement noise covariance matrix. The initial condition
of the state vector isx0 ∼ N(x̂+

0 , P
+
0 ). The estimate of

the state vector att = 0 begins with the initial state vector
estimate and with the initial covariance matrix of the initial
state vector estimation error

x̂+
0 = E[x0] (11)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )

T ] (12)

From time instancet − 1, the dynamic system (6) is simu-
latively propagated one step ahead as

x̂−
t = f(x̂+

t−1, ut−1) (13)

wheret = 1, 2, . . .. This one step prediction gives an a priori
state estimate. The time update of the covariance matrix
estimate is given by

Ṗ = Z(x̂)P + PZT (x̂) +Q (14)

where

Z(x̂) =
∂fc(x)

∂x

∣

∣

∣

∣

x=x̂

(15)

andQ is a spectral density matrix, whereQ = 1
T
Qt. The

covariance matrix estimate of state vectorx̂−
t estimation

error is achieved by simulative propagation of Eq. (14)

P−
t = g(P+

t−1, Z(x̂+
t−1)) (16)

The EKF gain matrix is in time instantt

Kt = P−
t LT

t [LtP
−
t LT

t +MtRtM
T
t ]−1 (17)

and the measurementyt is used for state vector estimation
(a posteriori estimate)

x̂+
t = x̂−

t +Kt[yt − h(x̂−
t )] (18)

The covariance matrix a posteriori estimate is updated as

P+
t = [I −KtLt]P

−
t [I −KtLt]

T +KtMtRtM
T
t KT

t (19)

where
Lt =

∂h(xt)
∂xt

∣

∣

∣

xt=x̂
−

t

(20)

Mt =
∂h(xt)
∂vt

∣

∣

∣

xt=x̂
−

t

(21)

The presented EKF algorithm will be generally noticed as

x̂+
t+1 = fF (yt+1, x̂

+
t , ut) (22)

for t = 0, 1, . . ., wherefF : R2nq+np × R
nu → R

2nq+np

represents the EKF dynamics and its shorter notationfut

F (·)
will be used.

IV. M OVING HORIZON OBSERVER ALGORITHM

In the basic moving horizon estimation formulation
the statistics of the process and measurement noises
zt, vt are assumed unknown. The function composi-
tion as the application of one function to the re-
sults of another like f(f(xt−N , ut−N ), ut−N+1) and
h(f(xt−N , ut−N ), ut−N+1) can be written asfut−N+1 ◦
fut−N (xt−N ) and hut−N+1 ◦ fut−N (xt−N ) respectively,
where "◦" denotes function composition. TheN + 1 sub-
sequent measurements of the outputsYt and inputsUt up to
time t with theN + 1 measurement noise vectorVt is

Yt =











yt−N

yt−N+1

...
yt











;Ut =











ut−N

ut−N+1

...
ut











; Vt =











vt−N

vt−N+1

...
vt











(23)



wheret = N+1, N+2, . . .. Neglecting process noise in the
basic MHO formulation, following algebraic map is defined

Ht(xt−N , Ut) =











hut−N (xt−N )
hut−N+1 ◦ fut−N (xt−N )

...
hut ◦ fut−1 ◦ . . . ◦ fut−N (xt−N )











Yt = Ht(xt−N , Ut) + Vt (24)

Define theN -information vector at timet

It = [yTt−N , . . . , yTt , u
T
t−N , . . . , uT

t ]
T (25)

The observer design problem is to reconstruct the vector
xt−N based on the information vectorIt. The basic formu-
lation of such a problem is defined as the inverse mapping
of Eq. (24). The unique existence and continuity of the
solution depends on the functionHt. If the Eq. (24) does not
have unique solution, the problem is ill-posed according to
definitions of [11]. The solution of vectorxt−N is in the case
of uniform observability formulated on an over-determined
set of algebraic equations where there are more equations
than unknowns for whichnx ≤ Nny. The formulation can
be under-determined if there is no persistence of excitation,
or the system is not observable [7].

The cost function of the MHO optimization problem is in
the meaning of the least-squares method defined as

JLS(x̂t−N |t, It) = ‖x̂t−N |t− x̄t−N |t‖2S+α‖Ŷt−Yt‖2 (26)

subject to the state constraints

x̂min
t−N ≤ x̂t−N ≤ x̂max

t−N (27)

where

Ŷt = Ht(x̂t−N , Ut) =











hut−N (x̂t−N )
hut−N+1 ◦ fut−N (x̂t−N )

...
hut ◦ fut−1 ◦ . . . ◦ fut−N (x̂t−N )











(28)
The cost function (26) comprises of two squared norms
where the first norm is weighted by theS matrix. The
contribution of theN -step model response to the optimized
vector x̂t−N is expressed through the second norm weight
parameterα. The first term in the given formulation can be
used to estimate the arrival cost [8], [12].

The a priori state estimate used in the arrival cost at
the beginning of the horizon is declared asx̄t−N |t and is
computed in a time instantt for the time instancet−N by
pre-filtration with an EKF [12]. The EKF is running at the
beginning of horizon on the output datayt−N which were
measured in thet−N time instance. This is the information
which corrects the one-step simulation

x̂−
t−N |t = f(x̂t−N−1|t−1, ut−N−1) (29)

The a priori state estimate at the beginning of the horizon is
computed as

x̄t−N |t = x̂−
t−N |t +Kt−N |t[yt−N − h(x̂−

t−N |t)] (30)

x̄t−N |t

x̂t|tx̂t−1|tx̂t−2|tx̂t−N |tx̂t−N−1|t−1

utut−1ut−2ut−Nut−N−1

ytyt−1yt−2yt−N

x̂+
t|t

x̂+
t−1|tx̂+

t−2|tx̂+
t−N+1|t

N + 1-window

N -step model prediction

N -step post-filtration

Fig. 1. Time sequences of state, input and output variables inN + 1

Moving Horizon window

ut yt
Dynamical system

x̂t−N−1|t−1

Datapool
Yt

Ut

Pre-filtrationUt−1 x̄t−N |t

x̂+
t|t

N -step
model prediction

Cost function
minimization

x̂t−N |t

Ŷt

x̂t−N |t

z−1

z−1

N -step
post-filtration

Optimizer

-

-

Fig. 2. Algorithm scheme of Moving Horizon Observer wherez−1 is a
one sample delay operator

The covariance matrix is computed according to Eq. (31).
The other matrix computations necessary for the pre-filtration
are done via regular EKF equations as explained in Section
III (index t changes tot −N |t and indext − 1 changes to
t−N−1|t−1). The only difference is that the EKF equations
here are applied for the first time instancet−N of receding
window. Note that with this pre-filtration the stochastic
properties of the process noise and measurement noise is
assumed known. Also note that neglecting process noise in
(28) may lead to accuracy loss, and is made for reduced
computations. The post-filtration is further performed to
propagate the state to current time instancet.

The schematic time sequence of the a priori state estimate
vector (x̄), state estimate vectors(x̂), post-filtered state
estimate vectors(x̂+), input (u) and output(y) vectors on
N -horizon are in Figure 1. The MHO algorithm, schemati-
cally shown in Figure 2 consists of three main computation
parts: Pre-filtration, Optimizer, andN -step post-filtration.
The Optimizer containsN -step model simulation and Cost
function minimization blocks. The main computation engine
is the optimization algorithm that performs the cost function
minimizations. The MHO algorithm with pre-filtration can



P+
t−N |t = [I −Kt−N |tLt−N |t]P

−
t−N |t[I −Kt−N |tLt−N |t]

T +Kt−N |tMt−N |tRtM
T
t−N |tK

T
t−N |t (31)

be summarized into following steps:

St. 0. Load the initial Datapool with measurement data
and input data

St. 1. Obtain the actual output measurementyt, input ut

and update the Datapool
St. 2. If the current time instance ist = N + 1, set the

initial values forx̂+
0|N andP+

0|N (as in the case of
EKF Eq. (11),(12)). Then according to Figure 1:
x̂+
0|N = x̂0|N (this value is set by the user)

Else for t > N + 1: x̂+
t−N−1|t−1 = x̂t−N−1|t−1

(this value is set from the last optimization run)
St. 3. Compute the a priori estimate with Eq. (29)
St. 4. Numerically integrateP−

t−N |t (as in the case of
EKF Eq. (14) through Eq. (16))

St. 5. Compute the EKF gain matrixKt−N |t (as in the
case of EKF according to Eq. (17))

St. 6. Compute the a posteriori state estimatex̂+
t−N |t with

Eq. (30) wherêx+
t−N |t = x̄t−N |t (Block in Figure

2: Pre-filtration)
St. 7. Minimize the cost function (26) to numerically

compute the optimal state vector at the very be-
ginning of receding windoŵxt−N |t. In the mini-
mization routine the model is used through the Eq.
(28). The initial condition for the optimization is
x̂init
t−N |t = x̄t−N |t.

St. 8. Use the EKF to estimate the state from the begin-
ning of receding window to the end of receding
window as

x̂+
t−N+i|t = f

ut−N+(i−1)

F (yt−N+i, x̂
+
t−N+(i−1)|t),

(32)
wherei = 1, 2, . . . , N . The initial condition for the
first step (i = 1) is x̂+

t−N |t = x̂t−N |t. (Block in
Figure 2:N -step post-filtration)

End of loop; Go to Step 1.

The numerical nonlinear programming solver will be dis-
cussed later in the context of the experiment.

V. ODE SOLVER USED BYEKF AND MHO

In both studied approaches (EKF, MHO), the propagation
of filter dynamics in Eq. (13), (14) and the propagation
of observer dynamics in Eq.(29), (28) is required through
the numerical simulation. Since variable-step solvers cannot
be used for hard real-time applications required to main-
tain a fixed processing time, this study is based on fixed-
step solvers. Any of the fixed-step continuous solvers can
simulate a model to any desired level of accuracy, given
a small enough step size. Unfortunately, it generally is not
possible, or at least not practical, to decide a priori which
combination of solver and step size will yield acceptable
results for the continuous states in the shortest time. De-
termining the best solver for a particular model generally
requires experimentation. In the following experiments the

Matlab functionode2 is used (the explicit Heun’s method).
The ode2 procedure for calculating the numerical solution
to the initial value problem defined by the deterministic part
of Eq. (6) ẋ = fc(x, u) with the initial conditionx0 is

x̃i+1 = xi + hfc(xi, ui) (33)

xi+1 = xi +
h

2
(fc(xi, ui) + fc(x̃i+1, ui)) (34)

where i represents the numerical step index andh is the
numerical step size. It can be seen as an extension of the
Euler method into a two-stage second-order Runge-Kutta
method. Heun’s method is a predictor-corrector method with
forward Euler’s method as predictor Eq. (33) and trapezoidal
method as corrector Eq. (34) [13]. This method was cho-
sen after some experimentation with a set of solvers. The
precision of the numerical solution of a given solver as a
function of numerical step sizeh is evaluated during the run
of the EKF. In our case, the solver which gives the best
EKF performance (smallest filtration errors) with other EKF
settings unchanged, is chosen.

VI. EXPERIMENTS

The presented MHO algorithm is experimentally tested on
the transient vibration motion data from the nano-positioning
stage shown in Figure 3. The system dynamics is perturbed
by the force generated in piezoelectric actuators forcing
the stage to move and vibrate around constant reference
displacement value. The transient vibration is triggered by
sudden removal of the payload (of a priori unknown weight)
attached to the vibrating system which is being excited by
the actuator force. The goal is to estimate the state-space
vibration model around the first resonant frequency of the
system, before and after the removal of payload and also
during the transient.

A. Model of Mass-Spring-Damper system

For a Single-Degree-of-Freedom vibration system
(SDOF), the equation of motion may be represented as
follows

mq̈(t) + bq̇(t) + kq(t) = f0(t) (35)

The state-space model consists of an ordinary differential
equation system with the massm [kg], displacementq =
x1 [µm], speedq̇ = x2 [µm.s−1], external forcef = cu
[kg.µm.s−2] applied through the piezoelectric actuator and
unknown force disturbancefu [kg.µm.s−2]
[

ẋ1

ẋ2

]

=

[

0 1
− k

m
− b

m

] [

x1

x2

]

+

[

0
c
m

]

u+

[

0
1
m

]

fu

(36)
The voltage input for the piezoelectric actuator isu [V]
and the state vector isx = [x1, x2, x3, x4, x5, x6]

T , with
unknown parameters (variables)k/m = x3 [s−2], b/m = x4

[s−1], c/m = x5 [µm.s−2.V−1] and fu/m = w = x6

[µm.s−2]. For the optimization computational purposes the



Fig. 3. Nanopositioning stage with highly resonant vibration dynamics

dynamics is partly scaled by state, input and output scales
where the new variables are introduced asxi/si = xs

i ,
zi/si = zsi , u/su = us, yt/sy = yst and vt/sy = vst . The
system defined by Eq.(36) is with the process noise rewritten
in the nonlinear, scaled and augmented form as

ẋs
1 =

s2
s1

xs
2 + zs1

ẋs
2 =−s3s1

s2
xs
3x

s
1 − s4x

s
4x

s
2 +

s5su
s2

xs
5u

s +
s6
s2

xs
6 + zs2

ẋs
3 = zs3; ẋ

s
4 = zs4; ẋ

s
5 = zs5; ẋ

s
6 = zs6 (37)

where only the displacement is measurable (sy = s1)

yst = xs
1,t + vst (38)

This model formulation given by Eq. (37) is used for the
EKF state estimation Eq. (18), EKF pre-filtration Eq. (30)
and EKF post-filtration Eq. (32) with process noisezs =
[zs1, z

s
2, z

s
3, z

s
4, z

s
5, z

s
6]

T defined by Eq. (10). However for
the MHO model output propagation given by Eq. (28), a
deterministic formulation is used wherez = 0. The fixed
numerical step for numerical integration of Eq. (37) is set to
h = 1.25.10−5[s], which givesTs

h
= 8 computational steps

of the ODE solver per sampling interval.

B. Instrumentation and Experimental Data

The experiments are performed on the long-range serial-
kinematic nano-positioning stage from easyLab (Figure 3),
where vibration along the y axis is considered. The other
used hardware is a Piezodrive PDL200 linear voltage am-
plifier (20 [V/V]), a ADE 6810 capacitive gauge and ADE
6501 capacitive probe from ADE Technologies to measure
displacement (5 [µm/V]), and two SIM 965 programmable
filters from Stanford Research Systems, used as reconstruc-
tion and anti-aliasing filters. The actuation signal and mea-
sured response was generated and recorded using a dSPACE
DS1103 harware-in-the-loop board, at a sampling frequency
of 10 kHz. More details about the actual hardware setup can
be found in [14]. From the frequency response data, reported
in [14], it was found that for the case with the payload
attached, the natural frequencyf1 =

√
x3/2π = 423[Hz] and

damping ratioζ1 = x4/2
√
x3 = 0.0146. For the case without

the payload, the natural frequency isf2 = 483[Hz] and
damping ratioζ2 = 0.0143. The input excitation signal for
the piezoelectric actuator is a Pseudo Random Binary Signal
(PRBS). The PRBS was designed to concentrate most of its
energy around the first resonant frequency of the system.

For parameter identification it is considered good practice
to concentrate signal power in the frequency domains that
contain peaks in the sensitivity functions [14]. This is done
in order to maximize the information content of the signals
used through additional filter that is chosen to be a band-pass
filter [15], using a first-order high-pass filter with lower cut-
off frequency offlc = 100[Hz], and a resonant second-order
low-pass filter, with natural frequency offn = 450[Hz], and
a damping ratio ofζ = 0.1. The filter

Wp(s) =
s

s+ 2πflc

(2πfn)
2

s2 + 2ζπfns+ (2πfn)2
,

applied for the input and output data, emphasizes the fre-
quency content close to the resonant peaks of the two
configurations, with and without payload.

The MHO and EKF algorithms are tested on the data
which are measured in advance. The speed signal is fur-
ther computed for validation purposes by differentiating the
displacement signal as

q̇t =
yt+1 − yt−1

2Ts

(39)

whereTs is a sampling period,Ts = 10−4[s]. In this equation
we use the measured displacement signal one sample ahead
which is only possible with the off-line computations, in
order to avoid phase loss errors.

C. Extended Kalman Filter setup

Good tuning of the EKF depends on precise information
about the stochastic properties of noises. The scaling factors
are set assu = 5; sy = 5; s1 = sy; s2 = 104; s3 = 7.106;
s4 = 7.10; s5 = 8.105; s6 = 105 such that the states and
parameters have approximately the same order of magnitude.
The measurement noise standard deviation of displacement
capacitive probe is estimated asσy = 10−3[µm] where the
measurement noise covariance (matrix) is defined as

Rt = (σy/sy)
2 (40)

and set toRt = (10−3/5)2[µm2]. The process noise spectral
density matrix is

Q = diag [Φ1,Φ2,Φ3,Φ4,Φ5,Φ6] , (41)

where the diagonal noise spectral densities are defined
and computed asΦi = 1/Ts(σi/si)

2. The standard de-
viation σi is estimated by user’s assumption about the
magnitude of process noise of given state or parame-
ter of a discrete (sampled) time sequence. After some
"hand tuning", the numerical valuesσ1 = 10−2[µm],
σ2 = 102[µm.s−1], σ3 = 104[s−2], σ4 = 5.10−2[s−1],
σ5 = 103[µm.s−2.V−1], σ6 = 104[µm.s−2] are found
to give optimal performance. TheΦ1 spectral density is



based on standard deviation, sampling time and scale com-
puted asΦ1 = 104[s−1](0.01[µm]/5[−])2[µm2.s−2.Hz−1],
where the other spectral densities are similarly com-
puted. The initial state vector estimate is set tox̂+

0 =
[0/s1, 0/s2, 6.10

6/s3, 70/s4, 5.10
5/s5, 0/s6]

T . The initial
covariance matrix of the initial state vector estimate error
is

P+
0 = diag [Σ1,0,Σ2,0,Σ3,0,Σ4,0,Σ5,0,Σ6,0] , (42)

where the diagonal elements are in accordance to
Eq. (12) computed asΣi = ((xi,0 − E[xi,0])/si)

2

and by initial conditions set as Σ1,0 =
(1[µm]/5[−])2[µm2], Σ2,0 = (103/104)2[µm2.s−2],
Σ3,0 = (1.106/(7.106))2[s−4], Σ4,0 = (1/(7.10))2[s−2],
Σ5,0 = (1.105/(8.105))2[µm2.s−4.V−2], Σ6,0 =
(1/105)2[µm2.s−4]

To prevent negative parameters, we use an ad hoc clipping
strategy in which negative filtered values of parameters are
set to zero.

D. Moving Horizon Observer setup

To minimize the cost function Eq. (26), Matlab’s con-
strained optimization functionfmincon is called. This soft-
ware minimization routine is set as a nonlinear programming
method known as Sequential Quadratic Programming (SQP)
[16]. The first stopping criterion for this method is a relative
toleranceδJ on the cost function value where the iterations
stop if |J(xi) − J(xi+1)| < δJ(1 + |J(xi)|). The other
stopping of the optimization metric isδx, which is a relative
bound on the size of a step, meaning iterations end when
|xi − xi+1| < δx(1 + |xi|). These parameters are set as
δJ = 2.10−5 and δx = 10−6. The SQP parameters that
significantly contribute to the precision of the method are
maximum δmax and minimum δmin change in variables
for finite-difference gradients. These parameters are set as
δmax = 0.1, δmin = 10−8. Finite differences, used to
estimate gradients, are computed with central method. The
number of fixed iterations and the number of function
evaluations of the SQP is implicitly limited through the above
mentioned parameters. The maximum number of iterations
can be considered as one of the tuning parameters for the
amount of filtration. The following equation for theS matrix
is motivated by [12]

S = RP−1 (43)

Two settings of the parameterα in the cost function Eq. (26)
are going to be considered:α = 1 (MHOa) andα = 10−4

(MHOb). The length of the horizon is set toN = 15 that
captures one oscillation period. TheS matrix Eq. (43) is
time-varying sinceP = P+

t−N |t, Eq. (31). The values ofRt,
Q andP+

0|N are set according to Eq. (40), (41) and (42).
The computational efficiency is a key factor when it comes

to real-time processing application with DSP, CPU or FPGA.
Computationally fast and efficient methods of function min-
imization, in the range of microseconds, based on SQP-type
algorithm for real-time applications are proposed in [17].

RSE x1 × 10−3
x2 × 103

EKF 1.375 5.507
MHOa 0.887 5.105
MHOb 1.233 5.454

TABLE I

ROOT SQUARE ERROR
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Fig. 4. Displacement and speed errors of the EKF and MHOa (α = 1)

E. Experimental results and discussion

The quality of the algorithms is evaluated by the Root
Square Error (RSE) computed for each state as

RSExj
= ‖ej‖ =

√

√

√

√

n
∑

t=1

e2j,t (44)

where j = 1, 2, n = 4000, e1,t = yt − x̂1,t and e2,t =
q̇t − x̂2,t.

The EKF and MHO are run with setups presented in
previous subsections. The qualitative results are summarized
through the RSE index Eq. (44) of displacement and speed in
Table I. The filtering/observation accuracy of displacement
and speed is in this study taken as the main criterium
to evaluate the algorithms. According to this criterium the
MHO, in comparison with the EKF has shown improved
performance with certain trade offs. The ratio between the
pre-filtered information (1st norm in Eq. (26)) and model-
optimized information (2nd norm in Eq. (26)) expressed
by parameterα, is one of the main tuning parameters of
MHO algorithm. The value of parameterα is a tradeoff
between the accuracy and parameter variance as we can
further see. The comparison of EKF and MHOa is shown
through the displacement and speed errors in Figure 4. The
estimation of parameters and the disturbance is shown in
Figure 5. In these figures the parameterα = 1. The
comparison of displacement error and speed error of EKF
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Fig. 5. Estimated parameters and disturbance of the EKF and MHOa
(α = 1)
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Fig. 6. Displacement and speed errors of the EKF and MHOb (α = 10−4)

and MHOb is shown in Figure 6. The estimation of param-
eters and the disturbance is shown in Figure 7. In these
figures the parameterα = 10−4. The presented figures
demonstrate faster convergence of MHO compared to the
EKF during transient. The acceleration disturbancex̂6 is also
estimated, which accounts for the force disturbance caused
by the sudden removal of payload, also seen in Figure 3.
Greater variance of estimated parameters given by MHOa
is documented compared to MHOb. This is caused by a
process noise that in pre-filtration and post-filtration part
we consider to have Gaussian properties, but in moving
horizon (model-optimization) part we are not modeling the
uncertainty, leaving the deterministic model representation,
through parameters, to reflect the unmodeled dynamics. This
reflection of unmodeled higher order modes or perhaps
nonlinearities in piezoelectric actuators is more evident for
MHOa where much stronger trust is put on the deterministic
model-based observer part through parameterα. The unmod-
eled process noise is closely related to a problem being ill-
conditioned, when a small unmodeled disturbance causes a
great change in parameters. This is highlighted in parameter
estimation figures where greater variance of parameters is
presented in MHOa setting in Figure 5 compared to MHOb
setting in Figure 7. In this problem formulation, theα is
a tradeoff between the state estimation error and parameter
variance. The tuning of parameterα is a "generate and test"
procedure, whereα = 10−4 is the acceptable setting. The
overall computational time is significantly faster in the case
of MHOb when the optimization is running only when there
is a potential to improve the estimates, where in the case
of MHOa the iterations are running only to overfit and to
model the noise through great variance of parameters.The
main advantage of the MHO is that the nonlinear model
leads to faster convergence of parameters and more accurate
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Fig. 7. Estimated parameters and disturbance of the EKF and MHOb
(α = 10−4)

displacement and speed estimates during the transient.
This paper presents the state and parameter estimation

of a Single-Degree-of-Freedom (SDOF) vibration dynamic
system, however the proposed moving horizon observer
can be applied also to a Multi-Degree-of-Freedom (MDOF)
vibration system.
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