
Chapter 1

Introduction to Nonlinear Model

Predictive Control and Moving Horizon
Estimation

Tor A. Johansen

Abstract Nonlinear model predictive control and moving horizon estima-
tion are related methods since both are based on the concept of solving an
optimization problem that involves a finite time horizon and a dynamic math-
ematical model. This chapter provides an introduction to these methods, with
emphasis on how to formulate the optimization problem. Both theoretical and
practical aspects are treated, ranging from theoretical concepts such as sta-
bility, existence and uniqueness of the solution, to practical challenges related
to numerical optimization methods and computational complexity.

1.1 Introduction

The purpose of this chapter is to give an introduction to two of the most
powerful tools that can be used to address nonlinear control and estimation
problems - nonlinear model predictive control (NMPC) and nonlinear mov-
ing horizon estimation (NMHE). They are treated together since they are
almost identical in approach and implementation - even though they solve
two different and complementary problems.

The text is intended for advanced master and doctoral level students that
have a solid background in linear and nonlinear control theory, and with a
background in linear MPC, numerical methods for optimization and simula-
tion, and state estimation using observers and the Extended Kalman Filter.
Other excellent surveys to the topic and introductory texts can be found in
Allgöwer et al (1999); Findeisen et al (2003b); Mayne et al (2000); Morari
and Lee (1999); Rawlings (2000).
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1.1.1 Motivation and Main Ideas

1.1.1.1 Nonlinear Control

Consider the problem of controlling a multi-variable nonlinear system, subject
to physical and operational constraints on the input and state. Well known
systematic nonlinear control methods such as feedback linearization (Isidori
(1989); Marino and Tomei (1995); Nijmeijer and van der Schaft (1990)) and
constructive Lyapunov-based methods (Krstic et al (1995); Sepulchre et al
(1997)) lead to very elegant solutions, but they depend on complicated design
procedures that does not scale well to large systems and they are not devel-
oped in order to handle constraints in a systematic manner. The concept
of optimal control, and in particular its practical implementation in terms
of Nonlinear Model Predictive Control (NMPC) is an attractive alternative
since the complexity of the control design and specification increases moder-
ately with the size and complexity of the system. In particular for systems
that can be adequately modeled with linear models, MPC has become the
de-facto standard advanced control method in the process industries (Qin
and Badgwell (1996)). This is due to its ability to handle large scale multi-
variable processes with tens or hundreds of inputs and states that must fulfill
physical and operational constraints.

MPC involves the formulation and solution of a numerical optimization
problem corresponding to a finite-horizon optimal control problem at each
sampling instant. Since the state of the system is updated during each sam-
pling period, a new optimization problem must be solved at each sampling
interval. This is know as the receding horizon approach. With linear mod-
els the MPC problem is typically a quadratic or linear program, which is
known to be convex and for which there exists a variety of numerical meth-
ods and software. While the numerical complexity of linear MPC may be
a reasonable challenge with powerful computers being available, there is no
doubt that NMPC is limited in its industrial impact due to the challenges
of guaranteeing a global (or at least sufficiently good) solution to the result-
ing nonlinear optimization problem within the real-time requirements (Qin
and Badgwell (2000)). Other limiting factors are the challenges of developing
nonlinear dynamic models and state estimators. The nonlinear programming
problem may have multiple local minima and will demand a much larger
number of computations at each sample, even without providing any hard
guarantees on the solution. Hence, NMPC is currently not a panacea that
can be plugged in to solved any control problem. However, it is a power-
ful approach of great promise that has proven itself in several applications,
Qin and Badgwell (2000); Foss and Schei (2007), and with further research
in the direction of numerical implementation technology and modeling and
state estimation methods, it may strengthen its position as the most powerful
method available for certain classes of systems.
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1.1.1.2 Nonlinear Estimation

Consider the state estimation problem of nonlinear systems. A least-squares
optimal state estimation problem can be formulated by minimizing a prop-
erly weighted least-squares criterion defined on the full data history horizon,
subject to the nonlinear model equations, (Moraal and Grizzle (1995b); Rao
et al (2003)). This is, however, impractical as infinite memory and processing
will be needed as the amount of data grows unbounded with time. Alterna-
tively, a well known sub-optimal estimator is given by an Extended Kalman
Filter (EKF) which approximates this least-squares problem and defines a fi-
nite memory recursive algorithm suited for real-time implementation, where
only the last measurement is used to update the state estimate, based on the
past history being approximately summarized by estimates of the state and
the error covariance matrix, Gelb (2002). Unfortunately, the EKF is based on
various stochastic assumptions on noise and disturbances that are rarely met
in practice, and in combination with nonlinearities and model uncertainty,
this may lead to unacceptable performance of the EKF. A possible better use
of the dynamic model and past history when updating the state estimate is
made by a nonlinear Moving Horizon State Estimator (NMHE) that makes
use of a finite memory moving window of both current and historical mea-
surement data in the least-squares criterion, possibly in addition to known
constraints on the state and uncertainty, and a state estimate and error co-
variance matrix estimate to estimate the arrival-cost at the beginning of the
data window, see Rao et al (2003); Moraal and Grizzle (1995b); Alessandri
et al (1999, 2008) for different formulation relying on somewhat different as-
sumptions. Such an MHE can also be considered a sub-optimal approximation
to an estimator that uses the full history of past data, and some empirical
studies, Haseltine and Rawlings (2005) show that the NMHE can perform
better than the EKF in terms of accuracy and robustness. It should also be
mentioned that other variations of the Kalman filter, such as particle filters
and the unscented Kalman filter, also show great promise for nonlinear state
estimation (Rawlings and Bakshi (2006); Kandepu et al (2008); Bølviken et al
(2001)) and are competitive alternatives to NMHE. Finally, we remark that
nonlinear observers based on constructive Lyapunov design methods Krstic
et al (1995); Sepulchre et al (1997) and nonlinear system theory (Marino and
Tomei (1995); Isidori (1989)) are developed for certain classes of nonlinear
systems and leads to very elegant and computationally efficient solutions, but
are not easy to develop for large classes of high order multi-variable systems.

1.1.2 Historical Literature Review

Originally, the MPC and MHE methods were developed fairly independently.
More recently, with the development of algorithms for constrained NMPC and
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NMHE their developments have converged and the methods are more often
presented as duals of each other and with similar notation and terminol-
ogy. One reason is the fundamental duality between estimation and control,
Goodwin et al (2005), but equally important may be their dependence on
nonlinear numerical optimization and similarities in the formulation of the
optimization problems that leads to synergies when implementing practical
solutions.

1.1.2.1 Nonlinear Model Predictive Control

The nonlinear optimal control theory was developed in the 1950’s and
1960’s, resulting in powerful characterizations such as the maximum prin-
ciple, Athans and Falb (1966) and dynamic programming, Bellman (1957).
In the direct numerical optimal control literature, Hicks and Ray (1971); Deu-
flhard (1974); Biegler (1984); Bock and Plitt (1984); Betts (2001); Gill et al
(1997); Bock et al (1999); von Stryk (1993), numerical methods to compute
open loop control trajectories were central research topics. Problem formu-
lations that included constraints on control and state variables were treated
using numerical optimization.

NMPC involves the repetitive solution of an optimal control problem at
each sampling instant in a receding horizon fashion. Unfortunately, there
is no guarantee that the receding horizon implementation of a sequences of
open loop optimal control solutions will perform well, or even be stable, when
considering the closed loop system. This challenge, in combination with the
tremendous success of linear MPC in the process industries, Qin and Badg-
well (1996), lead to an increasing academic interest in NMPC research with
focus on stability analysis and design modifications that guarantee stability
and robustness. The early results Chen and Shaw (1982); Keerthi and Gilbert
(1988); Mayne and Michalska (1990) boosted a large series of research, in-
cluding Michalska and Mayne (1993); Alamir and Bornard (1995); Chen and
Allgöwer (1998); Nicolao et al (2000); Scokaert et al (1999); Magni et al
(2001a,b); Jadbabaie et al (2001); Mayne et al (2000). Industrial applications
of NMPC have been reported, and are surveyed in Qin and Badgwell (2000);
Foss and Schei (2007).

One of the early contributions of NMPC are given in Li and Biegler (1989),
that uses linearization procedures and Gauss-Newton methods to provide a
numerical procedure for NMPC based on SQP that makes only one Newton-
iteration at each sampling instant. Theoretical results are also given in Li and
Biegler (1990). The continuation/GMRES method of Ohtsuka (2004) is based
on a similar philosophy of only one Newton-iteration per sample, while it is
based on interior point methods. Recent NMPC research along similar ideas
has benefited considerably from progress in numerical optimization, being
able to take advantage of structural properties on the NMPC problem and
general efficiency improvements, e.g. Biegler (2000); Diehl et al (2009); Tenny
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et al (2004); Zavala and Biegler (2009), in addition to important issues such
as robustness Magni et al (2003); Magni and Scattolini (2007); Limon et al
(2006).

In parallel with the development of NMPC, researchers have developed
so-called Real-Time Optimization (RTO) approaches, Sequeira et al (2002);
Xiong and Jutan (2003). They are conceptually similar to NMPC, as they
are generally based on nonlinear models (usually first principles models) and
nonlinear programming. Their conceptual difference is that RTO uses static
nonlinear models, while NMPC uses dynamic nonlinear models.

1.1.2.2 Nonlinear Moving Horizon Estimation

Generalizing ideas from linear filtering, Jazwinski (1968), early formulations
of NMHE were developed in Jang et al (1986); Ramamurthi et al (1993);
Kim et al (1991); Tjoa and Biegler (1991); Glad (1983); Zimmer (1994);
Michalska and Mayne (1995). A direct approach to the deterministic discrete-
time nonlinear MHE problem is to view the problem as one of inverting a
sequence of nonlinear algebraic equations defined from the state update and
measurement equations, and some moving time horizon, Moraal and Grizzle
(1995b).

Such discrete-time observers are formulated in the context of numerical
nonlinear optimization and analyzed with respect to convergence in Rao et al
(2003); Alessandri et al (1999, 2008); Raff et al (2005); Alamir (1999). In
recent contributions, Biyik and Arcak (2006) provides results on how to use
a continuous time model in the discrete time design, while issues related to
parameterization are highlighted in Alamir (2007) computational efficiency
are central targets of Zavala et al (2008); Alamir (2007); Alessandri et al
(2008).

Uniform observability is a key assumption in most formulations and anal-
ysis of NMHE. For many practical problems, like combined state and pa-
rameter estimation problems, uniform observability is often not fulfilled and
modifications are needed to achieve robustness, Moraal and Grizzle (1995a);
Sui and Johansen (2010).

1.1.3 Notation

Norms: For a vector x ∈ Rn, let ||x|| = ||x||2 =
√
xTx denote the Euclidean

norm, and ||x||1 = |x1| + ... + |xN | and ||x||∞ = maxi |xi|. The weighted

norms are for a given symmetric matrix Q ≻ 0 given as ||x||Q =
√

xTQx and
we use the same notation also when Q � 0. Vectors x1, x2, ..., xN are stacked
into one large vector x by the notation x = col(x1, x2, ...., xN ).



6 Tor A. Johansen

For a continuous signal x(t), where t denotes continuous time, we let
x[t0, t1] denote the trajectory between t0 ≤ t ≤ t1.

1.1.4 Organization

This chapter is organized in three main sections. In section 1.2 the formulation
of NMPC optimization problems is described, focusing on the consequences
of the various choices and challenges an engineer will face when designing and
tuning an NMPC. Likewise, section 1.3 considers the formulation of NMHE
optimization problems. The more detailed aspects of implementation in terms
of numerical computations and solving the optimization problem, are treated
on a general level common for both NMPC and NMHE, in section 1.4.

1.2 NMPC Optimization Problem Formulation

This section will focus on the formulation of the NMPC problem, while the
detailed issues related to its numerical solution are postponed until section
1.4. It is, however, important to have in mind that these two issues are closely
linked. While the NMPC problem formulation is driven by the specification
of the control objective, constraints and dynamic model formulations, one
should also consider potential numerical challenges at this point. In partic-
ular, important characteristics of the tradeoff between numerical accuracy
and computational complexity are determined already at the point when the
NMPC optimization problem is formulation through discretization, choice of
parameterizations, and choice of decision variables and constraint formula-
tions in the optimization problem. Some of these relationships are treated
also in this section, together with fundamental properties of the optimization
problem, including stability, convexity and the link between controllability
and well-posedness of the optimization problem.

1.2.1 Continuous-time Model, Discretization and

Finite Parameterization

This section will introduce a basic nonlinear optimal control formulation
starting from a continuous time model and a finite horizon where the ob-
jective is to minimize a cost function
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J(u[0, T ], x[0, T ]) ,

∫ T

0

ℓ(x(t), u(t), t)dt + S(x(T ), T ) (1.1)

(1.2)

subject to the inequality constraints for all t ∈ [0, T ]

umin ≤ u(t) ≤ umax (1.3)

g(x(t), u(t), t) ≤ 0 (1.4)

and the evolution of the ordinary differential equation (ODE) given by

d

dt
x(t) = f(x(t), u(t), t) (1.5)

with given initial condition x(0) ∈ Rn. The function ℓ is know as the stage
cost, S is the terminal cost, T > 0 is the horizon, and together these define
the cost function J . The evolution of the state x(t) is given by the func-
tion f according to (1.5) and depends on the input signal u(t) ∈ R

m and
time t, and forms an infinite-dimensional equality constraint to the optimal
solution in the formulation above. In addition there is saturation on the in-
put with minimum and maximum thresholds umin and umax, respectively,
and general inequality constraints jointly on states and inputs, point-wise in
time t ∈ [0, T ], defined by the function g. These constraints may result from
both physical and operational constraints of the control system and stability-
preserving terminal sets that will be discussed later in section 1.2.3, see also
Mayne et al (2000).The properties of ℓ and S have consequences for the con-
trol performance, including stability, and must be carefully understood and
tuned, Mayne et al (2000). We will return to this important issue in section
1.2.3. The explicit time-dependence in f, g, ℓ allows for time-varying reference
trajectories, known disturbances and exogenous input signals to be accounted
for in the optimal control problem formulation. Throughout this chapter we
implicitly assume all the functions involved satisfy the necessary regularity
assumptions, such as continuity and smoothness.

The above formulation basically defines an infinite-dimensional optimal
control problem whose solution can be characterized using classical tools like
calculus of variations, Pontryagin’s maximum principle (Athans and Falb
(1966)) and dynamic programming, Bellman (1957). In these indirect meth-
ods such characterizations of the solution can help us only in a very lim-
ited number of special cases to find an analytic exact representation of the
solution. The most interesting and well known is the unconstrained linear
quadratic regulator (LQR) where the feedback solution is a linear state feed-
back u = Kx under additional assumptions on T and S that makes the cost
function equivalent to an infinite horizon cost Athans and Falb (1966). More
recently, explicit piecewise linear state feedback representation of the solu-
tion can be made for the linearly constrained LQR problem (Bemporad et al
(2002)) and more generally for linearly constrained discrete-time piecewise
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linear systems, Bemporad et al (2000), although the complexity of the exact
representation may be prohibitive for anything but small scale systems.

Although numerical solutions can be found based on the characterizations
of the indirect methods, In the context of NMPC we choose to restrict our
attention to so-called direct methods that seems most promising and popular.
They are characterized by discretization and finite parameterization being
introduced in the optimal control problem formulation which is then directly
solved with numerical methods. The principle of NMPC is to repeatedly solve
finite-horizon optimal control problems of the above kind at each sampling
instant. This means that the initial state x(0) to (1.5) is viewed as the current
state based on the most recent measurements, and the optimal control tra-
jectory u[0, T ] solving the above problem is implemented for a short period
of time (usually one sampling interval, typically much smaller than T ) until
the procedure is repeated and an updated optimal control trajectory is avail-
able. However, the solution of the above optimal control problem, requires
reformulations for the following reasons

• The solution to the ordinary differential equation (1.5) with given initial
conditions must generally be based on discretized to be handled by numeri-
cal integration since exact closed-form solutions of the ODE are usually not
possible to formulate in the general nonlinear case. Viewed in a different
way, the infinite number of equality constraints (1.5) must be represented
by a finite approximation.

• The infinite-dimensional unknown solution u[0, T ] should be replaced by a
finite number of decision variables to be able to define a finite-dimensional
optimization problem that can be solved using numerical optimization.

• Measurements are typically sampled data available only at the sampling
instants, such that an updated initial state x(0) will normally be available
only at defined sampling instants.

• Arbitrary control trajectories cannot be implemented since typically the
control command can only be changed at defined sampling instants and is
typically assumed to be constant (or some other simple sample-and-hold
function such as linear) between the sampling instants.

In order to reformulate the problem into a finite-dimensional and practical
setting, we will make the following assumptions that will allow the integral
and differentiation operators to be approximated by numerical integration
methods.

• The horizon T is finite and given.
• The input signal u[0, T ] is assumed to be piecewise constant with a regular

sampling interval ts such that T is an integer multiple of ts, and param-
eterized by a vector U ∈ R

p such that u(t) = µ(t, U) ∈ R
r is piecewise

continuous.
• An (approximate) solution to (1.5) is assumed to be defined in the form
x(t) = φ(t, U, x(0)) at N discrete time instants Td = {t1, t2, ..., tN} ⊂ [0, T ]
for some ODE solution function φ(·). The discrete set of time instants Td



1 Introduction to NMPC and NMHE 9

results from discretization of the ODEs and its time instants may not be
equidistant. A simulation of the ODEs embedded in the function φ(·) may
incorporate additional intermediate time-steps not included in Td, since the
purpose of Td is primarily to discretize the inequality constraints (1.3)-(1.4)
at a finite number of representative points in time and to approximate the
integral in (1.1) with a finite sum. In general, the time instants Td need
not coincide with sampling instants.

The assumption of given horizon T is typical for many NMPC problems, but
there are important exceptions such as minimum-time formulations in e.g.
robotics, Shin and McKay (1985), batch process control (Foss et al (1995);
Nagy and Braatz (2003); Nagy et al (2007)), and other problems such as div-
ing compression (Feng et al (2009)), where the horizon T may be considered
a free variable. The resulting modifications to the problem formulations may
lead to additional challenges related to the time discretization and may make
the optimization problem more challenging.

The basis for the NMPC is the nominal model (1.5), and we remark that
model uncertainty, unknown disturbances and measurement errors are not
accounted for in this formulation of the NMPC problem. Various extensions
and variations that can relax many of the assumptions above can be made
relatively easy as straightforward modifications to the basic problem formu-
lation. Obviously, the ODEs (1.5) can result from the spatial discretization
of a partial differential equation (PDE), and the problem formulation can
be augmented with nonlinear algebraic constraints in a straightforward way
to account for a differential-algebraic model (DAE) model formulation (Cer-
vantes and Biegler (1998); Diehl et al (2002)). For simplicity of presentation,
we stick to the formulation above and return to some alternatives and op-
portunities that will be discussed in later sections.

The parameterization of the input signal µ(t, U) on the horizon t ∈ [0, T ] is
important and will influence both the control performance and computational
performance. In general, it should satisfy the following objectives

• Be sufficiently flexible in order to allow for a solution of the reformulated
optimal control problem close to the solution original problem (1.1)-(1.5).

• Be parsimonos in the sense that it does not contain unnecessary parameters
that will lead to unnecessary computational complexity and numerical
sensitivity.

• Be implementable within the capabilities of the control system hardware
and software, meaning that particular consideration may be needed for
any parameterization beyond a piecewise constant input trajectory that is
restricted to change its value only at the sampling instants.

Based on the last very practical point, a general choice is the piecewise con-
stant control input µ(t, U) = Uk for tk ≤ t < tk+1 parameterized by the
vector U = col(U0, ..., UN−1) ∈ RmN . Practical experience shows that the
receding horizon implementation offers considerable flexibility for a NMPC
to recover performance due to sub-optimality at each step. Consequently, it is
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common practice to implement move-blocking strategies such that a smaller
number of parameters is required by restricted the input from change at every
sampling instant on the horizon, in particular towards the end of the horizon.
For example, MPC has been successfully implemented for stable plants based
on linear models by optimizing a constant input on the whole horizon, Qin
and Badgwell (1996).

1.2.2 Numerical Optimal Control

In this section the basic optimal control formulation in section 1.2.1 is refor-
mulated into a form suitable for numeric solution by a nonlinear optimization
solver.

As classified in Diehl et al (2009) there are two main avenues to direct
numerical optimal control

• The sequential approach. The ODE constraint (1.5) is solved via nu-
meric simulation when evaluating the cost and constraint functions. This
means that the intermediate states x(t1), ...., x(tN ) disappear from the
problem formulation by substitution into the cost and constraint func-
tions, while the control trajectory parameters U are treated as unknowns.
This leads to a sequence of simulate-optimize iterations, often known as
Direct Single Shooting, Hicks and Ray (1971); Sargent and Sullivan (1977);
Kraft (1985).

• The simultaneous approach. The ODE constraints (1.5) are dis-
cretized in time and the resulting finite set of nonlinear algebraic equa-
tions are treated as nonlinear equality constraints. The intermediate states
x(t1), ...., x(tN ) are treated as unknown variables together with the con-
trol trajectory parameters U , and the cost function is evaluated simply
by replacing the integral (1.1) by a finite sum. This leads to simultaneous
solution of the ODEs and the optimization problem with a larger number
of constraints and variables. The most well known methods of this type are
Direct Multiple Shooting (Deuflhard (1974); Bock and Plitt (1984); Bock
et al (1999); Leineweber et al (2003)) and Collocation methods, (Tsang
et al (1975); Biegler (1984); von Stryk (1993)).

It is fair to say that all the above mentioned approaches have advantages that
could make them the method of choice when considering a specific problem.
Already now we are in position to understand some of the differences

• The simultaneous approach involves a larger number of constraints and
variables and therefore leads to ”bigger problems”. On the other hand,
the cost and constraint function evaluation is much simpler and there are
structural properties of the equations and numerical advantages that can
be exploited in some cases. This will be discussed in section 1.4.
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• Neglecting errors due to discretization and numerical approximations, all
methods results in the same optimal control trajectory. Hence, one may
expect the main difference between these alternatives to be related to
numerical properties and computational complexity. Numerical accuracy of
the solution is a consequence of discretization, round-off errors, sensitivity
to initial conditions and input, differences in linear algebraic methods, etc.
and must be balanced against computational cost. These aspects will be
treated in more detail in section 1.4.

• Nonlinear optimization problems are generally non-convex, and the con-
vergence and success of a given optimization algorithm depend largely on
the initial guess provided for the solution. The sequential and simultaneous
approach are in this sense fundamentally different, since the simultaneous
approach not only requires an initial control trajectory guess, but also
one for the state trajectory. The availability of a good initial guess for
the state trajectory is an advantage that can be exploited by the simul-
taneous approach. On the other hand, the presence of nonlinear equality
constraints (which by definition are non-convex) in the simultaneous ap-
proach, one cannot expect feasible initial guesses, which has consequences
for the choice of numerical methods, and will be further discussed in section
1.4.

• The sequential approach may use more or less arbitrary and separate ODE
and optimization solvers, which may in some cases be simple and conve-
nient when compared to the simultaneous approach that tend to require
more specialized and integrated numeric software combining these tasks.
This may be a particularly important issue for industrial users that must
use software tools based on an extensive set of requirements and con-
straints.

1.2.2.1 Direct Single Shooting

In direct single shooting (Hicks and Ray (1971); Sargent and Sullivan (1977);
Kraft (1985)), the ODE constraint (1.5) is eliminated by substituting its
discretized numerical solution x(tk) = φ(tk, U, x(0)) into the cost and con-
straints; minimize with respect to U the cost

V ∗(x(0)) = min
U∈Rp

V (U ;x(0)) ,

N
∑

k=1

ℓ(φ(tk, U, x(0)), µ(tk, U), tk)(tk − tk−1)

+S(φ(T, U, x(0)), T ) (1.6)

subject to

umin ≤ µ(tk, U) ≤ umax, tk ∈ Td (1.7)

g(φ(tk, U, x(0)), µ(tk, U), tk) ≤ 0, tk ∈ Td (1.8)
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and the ODE solution function φ(·) is the result of a numerical integration
scheme. In its simplest form, an explicit integration scheme may be used

x(tk+1) = F (x(tk), µ(tk, U), tk), x(t0) = x(0) given, (1.9)

for k = 0, ..., N − 1, leading to

φ(tk, U, x(0)) = F (. . . F (F (x(0), µ(t0, U), t0), µ(t1, U), t1), ..., µ(tk−1, U), tk−1)

(1.10)

However, φ(tk, U, x(0)) may also be computed using any other (implicit) dis-
cretization scheme in the simulation.

The problem (1.6) - (1.8) is a nonlinear program in U parameterized by
the initial state vector x(0) and time. Dependence on time-varying external
signals such as references and known disturbances are left implicit in order to
keep the notation simple. The receding horizon MPC strategy will therefore
re-optimize U when new state or external input information appears, typically
periodically at each sample. We assume the solution exists, and let it be
denoted U∗.

We note that the introduction of common modifications such as terminal
constraints and infeasibility relaxations still gives a nonlinear program, but
with additional decision variables and constraints.

1.2.2.2 Direct Collocation

In direct collocation (Tsang et al (1975); Biegler (1984); von Stryk (1993)) the
numerical solution for x(tk) is not substituted into the cost and constraint
functions, but the associated nonlinear algebraic equations resulting of an
ODE discretization scheme are kept. Hence, the variables x(tk), k = 1, ...N
are treated as unknown decision variables:

V ∗(x(0)) = min
U∈Rp,x(t1)∈Rn,...,x(tN)∈Rn

V (U, x(t1), ..., x(tN );x(0))

,

N
∑

k=1

ℓ(x(tk), µ(tk, U), tk)(tk − tk−1) + S(x(tN ), T ) (1.11)

subject to

umin ≤ µ(tk, U) ≤ umax, tk ∈ Td (1.12)

g(x(tk), µ(tk, U), tk) ≤ 0, tk ∈ Td (1.13)

F (x(tk+1), x(tk), µ(tk, U), tk) = 0, k = 0, ..., N − 1 (1.14)

x(t0) = x(0) given (1.15)



1 Introduction to NMPC and NMHE 13

where F is a function defined by the discretization scheme of the ODE (1.5).
We observe from (1.14) that it directly allows for implicit numerical integra-
tion methods to be used, and that the algebraic equations resulting from the
implicit integration scheme will be solved simultaneously with the optimiza-
tion.

The problem (1.11) - (1.13) is a nonlinear program in the variables
U, x(t1), ..., x(tN ) parameterized by the initial state vector x(0). In addition,
dependence on time-varying external signals such as references and known
disturbances are left implicit in order to keep the notation simple. The re-
ceding horizon MPC strategy will therefore re-optimize U when new state
or external input information appears, typically periodically at each sample.
We assume the solution exists, and let it be denoted U∗, x∗(t1), ..., x

∗(tN ).

1.2.2.3 Direct Multiple Shooting

Direct multiple shooting (Deuflhard (1974); Bock and Plitt (1984); Bock
et al (1999); Leineweber et al (2003)) combines elements of both direct single
shooting and direct collocation. It is a simultaneous approach in the sense
it reformulates the ODE (1.5) to a set of nonlinear algebraic equality con-
straints that are solved simultaneously with the optimization. It differs from
the direct collocation method since an ODE solver is used to simulate the
ODE (1.5) in each time interval tk ≤ t ≤ tk+1 for k = 0, ..., N − 1:

V ∗(x(0)) = min
U∈Rp,(x(t1),...,x(tN))T∈RnN

V (U, x(t1), ..., x(tN );x(0))

,

N
∑

k=1

ℓ(x(tk), µ(tk, U), tk)(tk − tk−1) + S(x(tN ), T ) (1.16)

subject to

umin ≤ µ(tk, U) ≤ umax, tk ∈ Td (1.17)

g(x(tk), µ(tk, U), tk) ≤ 0, tk ∈ Td (1.18)

x(tk+1) = φ(x(tk), µ(tk, U), tk), k = 0, ..., N − 1 (1.19)

x(t0) = x(0) given, (1.20)

where φ is a function defined by the simulation of the ODE (1.5). The main
difference between direct multiple shooting and direct collocation is due to
the use of an arbitrary ODE solver between the time-instants in Td. Direct
multiple shooting may have advantages when adaptive discretization schemes
are needed (due to stiff dynamics, for example) since they might require a
varying number of grid points for each iteration of the solver. With multiple
shooting this can in principle be ”hidden” within the direct single shooting
solver used between each time-instant in Td, while it directly leads to a change
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in the dimensions of the optimization problem at each iteration with a direct
collocation method. Direct multiple shooting decouples the grids required for
the point-wise discretization of the constraints (1.18) and the discretization
grid required to integrated the ODE. In a sense, direct multiple shooting
provides additional flexibility compared to both direct single shooting and
direct collocation. On the other hand, direct collocation leads to a more
sparse structure that can be exploited by the numerical optimization solver.

1.2.2.4 The Nonlinear Program – Feasibility and Continuity

This section summarizes some features of the numeric optimization problem
resulting from the direct approach to numerical optimal control in NMPC.
Important issues related to the well-posedness of the problem are reviewed.
They are related to existence and uniqueness of the solution and continuous
dependence of the solution on data such as the initial state x(0). These are
again related to regularity properties and fundamental properties such as
controllability.

In summary, all formulations reviewed in this section lead to a nonlinear
optimization problem of the form

V ∗(θ) = min
z
V (z, θ) (1.21)

subject to

G(z, θ) ≤ 0 (1.22)

H(z, θ) = 0 (1.23)

where z is a vector of decision variables (control trajectory parameters, in-
termediate states, slack variables, etc.) while θ is a vector of parameters to
the problem (initial states, parameters of reference trajectories, exogenous
inputs, etc.).

Existence of a solution corresponds to feasibility of the optimization prob-
lem. We define the feasible set of parameters ΘF as the set that contains all
θ for which the optimization problem (1.21)-(1.23) has a solution z∗(θ)

ΘF = {z | there exists a z such that G(z, θ) ≤ 0, H(z, θ) = 0} (1.24)

The feasible set is a result of the dynamics of the systems and basically all
design parameters of the NMPC problem. Generally speaking, it is desired to
make this set as large as possible while fulfilling the physical and operational
constraints of the control system. We will return to this design issue in section
1.2.3.

For simplicity, let us for the time being neglect the equality constraints
(1.23). Using direct single shooting they can be eliminated and are thus not
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important for the understanding of the fundamental issues in this section.
For a given parameter θ0 ∈ ΘF , consider the Karush-Kuhn-Tucker (KKT)
first-order necessary conditions for local optimality of (1.21)-(1.22); Nocedal
and Wright (1999)

∇zL(z0; θ0) = 0 (1.25)

G(z0; θ0) ≤ 0 (1.26)

µ0 ≥ 0 (1.27)

diag(µ0)G(z0; θ0) = 0 (1.28)

are necessary for a local minimum z0, with associated Lagrange multiplier µ0

and the Lagrangian defined as

L(z, µ; θ) , V (z; θ) + µTG(z; θ) (1.29)

Consider the optimal active set A0 at θ0, i.e. a set of indices to active con-
straints in (1.26). The above conditions are sufficient for local optimality of
z0 provided the following second order condition holds:

yT∇2
zL(z0, µ0; θ0)y > 0, for all y ∈ F − {0} (1.30)

with F being the set of all directions where it is not clear from first order
conditions if the cost will increase or decrease:

F = {y | ∇zGA0
(z0; θ0)y ≥ 0,∇zGi(z0; θ0)y = 0, for all i with (µ0)i > 0}.(1.31)

The notation GA0
means the rows of G with indices in A0. The following

result gives local regularity conditions for the optimal solution, Lagrange
multipliers and optimal cost as functions of θ.

Assumption A1. V and G are twice continuously differentiable in a
neighborhood of (z0, θ0).

Assumption A2. The sufficient conditions (1.25)-(1.28) and (1.30) for a
local minimum at z0 hold.

Assumption A3. Linear independence constraint qualification (LICQ)
holds, i.e. the active constraint gradients ∇UGA0

(z0; θ0) are linearly inde-
pendent.

Assumption A4. Strict complementary slackness holds, i.e. (µ0)A0
> 0.

Theorem 1. For a given z0 and θ0 then under assumptions A1-A3, z0 is
a local isolated minimum, and for θ in a neighborhood of θ0, there exists a
unique continuous function z∗(θ) satisfying z∗(θ0) = z0 and the sufficient
conditions for a local minimum.

If in addition A4 holds, then for θ in a neighborhood of θ0 the function
z∗(θ) is differentiable and the associated Lagrange multipliers µ∗(θ) exists,
and are unique and continuously differentiable. Finally, the set of active con-
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straints is unchanged, and the active constraint gradients are linearly inde-
pendent at z∗(θ).

The first part is proven in Kojima (1980), and the 2nd part follows from
Theorem 3.2.2 in Fiacco (1983).

The concept of controllability of nonlinear systems can be defined in several
ways. Here we have taken a pragmatic point of view, and focus on conditions
that leads to feasibility of the solution, and continuity of the value function
or solution as a function of the time-varying data θ that includes the ini-
tial conditions. In the context of numerical optimal control, issues related to
lack of controllability or inappropriate design choices will typically manifest
themselves in terms of infeasibility (no solution exists), indefiniteness of the
Hessian (a global solution is not found), or singularity or poor conditioning
of the Hessian (the solution is not unique and continuously dependent on
the input data, or is highly sensitive to changes in decision variables). The
latter case means that small changes in the state may require very large con-
trol actions to compensate. Since the above sufficient optimality conditions
are practically impossible to verify a priori, these are important issues to be
monitored by the practical NMPC algorithm based on output from the nu-
merical solver in order to asses the quality of the NMPC design and identify
problems related to lack of controllability or inappropriate design or tuning
of the NMPC criterion and constraints.

The simplest special case for which strong properties can be guarantees a
priori is the case of joint convexity:

A5. V and G are jointly convex for all (z, θ).
The optimal cost function can now be shown to have some regularity prop-

erties, Mangasarian and Rosen (1964):

Theorem 2. Suppose A1-A5 holds. Then XF is a closed convex set, and
V ∗ : ΘF → R is convex and continuous.

Convexity of ΘF and V ∗ is a direct consequence of A5, while continuity
of V ∗ can be established under weaker conditions; Fiacco (1983). We remark
that V ∗ is in general not differentiable, but properties such as local differen-
tiability and directional differentiability can be investigated as shown in e.g.
Fiacco (1983). Regularity properties of the solution function z∗ is a slightly
more delicate issue, and essentially relies on stronger assumptions such as
strict joint convexity that ensure uniqueness of the solution.

1.2.3 Tuning and Stability

The specification of the NMPC control functionality and dynamic perfor-
mance is essentially provided through the cost function and the constraints.
We will not go into details on the practical tuning tradeoffs and the types of
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physical and operational constraints, but note that one may typically choose
l2 or l1 type cost function

ℓ(x, u, t) = ||x− rx(t))|2Q + ||u− ru(t)||2R (1.32)

ℓ(x, u, t) = ||Q(x− rx(t))||1 + ||R(u− ru(t)||1 (1.33)

where the properties of the weight matrices Q � 0 and R � 0 are essential
for performance, and in some cases also stability. In the simplest case when
there exists an ε > 0 such that

ℓ(x, u, t) ≥ ε(||x||2 + ||u||2) (1.34)

it is clear that all states and control actions are directly observable through
the cost function, an it follows intuitively that minimization of the cost func-
tion will influence all states that are controllable. Based on the similar argu-
ments, it is in fact sufficient for stabilization that only the unstable modes of
the system are observable through the cost function, such that Q � 0 may
be sufficient if weights are given on the unstable modes, Mayne et al (2000).
In order to ensure uniqueness of the control trajectory it is generally recom-
mended that R ≻ 0. In summary, conventional LQR tuning guidelines (e.g.
Athans and Falb (1966)) are very helpful as a starting point also for NMPC.

Although the effect of modeling errors and disturbances will be discussed
in section 1.2.4.2, we remark that incorrect choice of the reference ru(t) for
the control input may lead to a steady-state error that will be important to
compensate for in many applications.

NMPC is based on the receding horizon control principle, where a finite
horizon open loop optimal control problem solved at each sampling instant
and the optimized control trajectory is implemented until a new optimized
control trajectory is available at the next sampling instant. This leads to
closed-loop control since each new optimized control trajectory is based on
the most recent state information. However, the numerical optimal control
problem solved at each sampling instant provides essentially an open-loop
control trajectory. The finite-horizon cost function imposes in principle no
stability requirement by itself, and with an unfortunate choice of design pa-
rameters (horizon T , weight matrices Q and R, terminal cost S, and certain
constraints) the closed loop NMPC may be unstable. In particular for open
loop unstable systems, it is important to understand how these design pa-
rameters should be chosen to avoid an unstable NMPC.

1.2.3.1 Stability Preserving Constraints And Cost-to-go

This section discusses stability of the NMPC in more depth, and how this
property is related to design parameters in the cost function and constraints.
The description will be fairly informal, and we avoid the technical details in
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order to focus on the most important concepts. For simplicity we assumme
that the objective is regulation to a constant set-point r. Further details and a
more rigorous treatment of the topic are found in Chen and Allgöwer (1998);
Mayne et al (2000); Michalska and Mayne (1993); Keerthi and Gilbert (1988);
Mayne and Michalska (1990), and we remark that the concepts relevant for
NMPC are essentially the same as for linear MPC.

The following principles are generally useful to ensure stability of an
NMPC Mayne et al (2000):

• The control trajectory parameterization µ(t, U) must be ”sufficiently rich”
- most theoretical work assume piecewise constant control input trajectory
that is allowed to move at each sampling instant.

• From the optimality principle of dynamic programming, Bellman (1957),
an infinite horizon cost may be expected to have a stabilizing property.
Theoretically, this leads to an infinite dimensional problem (except in sim-
ple special cases), so more practical approaches are

– Sufficiently large horizon T . However, it is not obvious to know what is
large enough, in particular for an open loop unstable system and when
the constrained outputs are non-minimum phase (see Saberi et al (2002)
for results on the importance of the zero-dynamics of the constrained
outputs for the linear case).

– A terminal cost chosen to approximate the cost-to-go, i.e. S(x(T ), T ) ≈
∫∞

t=T
ℓ(x(t), u(t), t)dt such that the total cost function approximates an

infinite horizon cost. Unfortunately, the cost-to-go is generally hard to
compute and simple approximations are usually chosen.

• Terminal set constraints of the type x(tN ) ∈ Ω that ensures that the
state is regulated ”close enough” to the set-point such that after T it is a
priori known that there exists a feasible and stabilizing controller that will
ensure that x(t), t ≥ T never leaves Ω and eventually goes asymptotically
to the set-point. There are many algorithms based on this philosophy,
some of them are defined as dual mode NMPC (Michalska and Mayne
(1993)) since they switch to a stabilizing simpler (non-NMPC) control law
once Ω is reached, while others continue to use NMPC also in Ω with the
confidence that there exist an (explicit or implicit) stabilizing control law
that the NMPC may improve upon.

• Terminal equality constraints of the type x(tN ) = r, Keerthi and Gilbert
(1988), that ensures convergence in finite time. This basically implies that
the cost after time T is zero, and is therefore related to both an infinite-cost
strategy and a stability-preserving-constraint strategy.

• Finally, the idea of choosing the cost-to-go to approximate an infinite-
horizon cost and the use of a terminal set may be combined. With the use
of a terminal set it will be sufficient to approximate the cost-to-go for states
that are within the terminal set, and simple tools like local linearization
can be applied to make this a fairly practical approach; Chen and Allgöwer
(1998).
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A formal treatment of these issues are found in the references, see Mayne
et al (2000) for additional references. The main tools are the use of either the
value function V ∗(x) as a Lyapunov function, or investigating monotony of
a sequences of value function values. Instead, we provide an example that is
essentially similar to the method in Chen and Allgöwer (1998).

Example. Consider the discrete-time non-linear system

x(tk+1) = F (x(tk), u(tk)) (1.35)

where x ∈ Rn is the state, and u ∈ Rm is the input. We assume the control
objective is regulation to the origin. For the current x(tk), we formulate the
optimization problem

V ∗(x(tk)) = min
U

J(U, x(tk)) (1.36)

subject to xk|k = x(tk) and

ymin ≤ yk+i|k ≤ ymax, i = 1, ..., N

umin ≤ uk+i ≤ umax, i = 0, 1, ..., N − 1,

xk+N |k ∈ Ω (1.37)

xk+i+1|k = F (xk+i|k, uk+i), i = 0, 1, ..., N − 1

yk+i|k = Cxk+i|k , i = 1, 2, ..., N

with U = {uk, uk+1, ..., uk+N−1} and the cost function given by

J(U, x(tk)) =
N−1
∑

i=0

(

||xk+i|k||2Q + ||uk+i||2R
)

+ ||xk+N |k||2P (1.38)

The compact and convex terminal set Ω is defined by

Ω = {x ∈ R
n | xTPx ≤ α} (1.39)

where P = PT ≻ 0 and α > 0 will be specified shortly. An optimal solution
to the problem (1.36)-(1.37) is denoted U∗ = {u∗t , u∗t+1, ..., u

∗
t+N−1}, and the

control input is chosen according to the receding horizon policy u(tk) = u∗t .
This and similar optimization problems can be formulated in a concise form

V ∗(x) = min
U
J(U, x) subject to G(U, x) ≤ 0 (1.40)

Define the set of N -step feasible initial states as follows

XF = {x ∈ R
n |G(U, x) ≤ 0 for some U ∈ R

Nm} (1.41)

Suppose Ω is a control invariant set, such that XF is a subset of the N -step
stabilizable set, Kerrigan and Maciejowski (2000). Notice that the origin is an
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equilibrium and interior point in XF . It remains to specify P ≻ 0 and α > 0
such that Ω is a control invariant set. For this purpose, we use the ideas
of Chen and Allgöwer (1998), where one simultaneously determine a linear
feedback such that Ω is positively invariant under this feedback. Define the
local linearization at the origin

A =
∂f

∂x
(0, 0), B =

∂F

∂u
(0, 0) (1.42)

Now, the following assumptions are made:

• (A,B) is stabilizable.
• P,Q,R ≻ 0.
• ymin < 0 < ymax and umin < 0 < umax.
• The function f is twice continuously differentiable, with f(0, 0) = 0.

Since (A,B) is stabilizable, let K denote the associated LQ optimal gain
matrix, such that A0 = A − BK is strictly Hurwitz. A discrete-time refor-
mulation of Lemma 1 in Chen and Allgöwer (1998) can be made, Johansen
(2004):

Lemma 1. If P ≻ 0 satisfies the Lyapunov-equation

AT
0 PA0 − P = −κP −Q−KTRK (1.43)

for some κ > 0, there exists a constant α > 0 such that Ω defined in (1.39)
satisfies

1. Ω ⊂ C = {x ∈ Rn | umin ≤ −Kx ≤ umax, ymin ≤ Cx ≤ ymax}.
2. The autonomous nonlinear system

x(tk+1) = F (x(tk),−Kx(tk)) (1.44)

is asymptotically stable for all x(0) ∈ Ω, i.e. Ω is positively invariant.
3. The infinite-horizon cost for the system (1.44)

J∞(x(tk)) =

∞
∑

i=0

(

||xk+i|k||2Q + ||Kxk+i|k||2R
)

(1.45)

satisfies J∞(x) ≤ xTPx for all x ∈ Ω.

In order to prove this result we first remark that the Lyapunov-equation
(1.43) is generally satisfied for sufficiently small κ > 0 because A0 is strictly
Hurwitz and the right-hand side is negative definite. One may define a set of
the form

Ωα1
= {x ∈ R

n | xTPx ≤ α1} (1.46)
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with α1 > 0, such that Ωα1
⊆ C, i.e. an ellipsoidal inner approximationΩα1

to
the polyhedron C where the input and state constraints are satisfied. Hence,
the first claim holds for all α ∈ (0, α1].

Define the positive definite function W (x) = xTPx. Along trajectories of
the autonomous system (1.44) we have

W (x(tk+1))−W (x(tk)) = (A0x(tk) + φ(x(tk)))
T P (A0x(tk) + φ(x(tk)))

−xT (tk)Px(tk)
= xT (tk)

(

AT
0 PA0 − P

)

x(tk) + φT (x(tk))Pφ(x(tk))

+xT (tk)(A
T
0 P + PA0)φ(x(tk))

where φ(x) = F (x,−Kx)−A0x satisfies φ(0) = 0. From (1.43)

W (x(tk+1))−W (x(tk)) = −xT (tk)
(

Q+KTRK + κP
)

x(tk)

+xT (tk)(A
T
0 P + PA0)φ(x(tk)) + φT (x(tk))Pφ(x(tk))

Let Lφ be a Lipschitz constant for φ in Ωα (which must exist because f is
differentiable). Since ∂φ/∂x(0) = 0 and φ is twice differentiable we can choose
Lφ > 0 as close to zero as desired by selecting α > 0 sufficiently small. Hence,
there exist α ∈ (0, α1] such that

W (x(tk+1))−W (x(tk)) ≤ −xT (tk)
(κ

2
P +Q+KTRK

)

x(tk) (1.47)

for all x(tk) ∈ Ω and positive invariance of Ω follows since Ω is a level set of
W .

Notice that from (1.47) we have

W (x(∞)) −W (x(0)) ≤ −J∞(x(0)) − κ

2

∞
∑

k=0

||x(tk)||2P (1.48)

and the third claim holds because W (x(∞)) = 0 for all x(0) ∈ Ω.
Hence, the result is proven, and it follows from Mayne et al (2000); Chen

and Allgöwer (1998) that the RHC makes the origin asymptotically stable
with region of attraction equal to the feasible set XF . A procedure for select-
ing P, κ and α can be adapted from Chen and Allgöwer (1998).

1.2.3.2 Sub-optimal NMPC

It may be difficult to establish a non-conservative hard bound on the number
of iterations required for convergence of the nonlinear programming problem
that NMPC must solve numerically at each sampling instant. Furthermore,
there may not be computational resources available to guarantee that a suffi-
cient number of iterations can be computed, and only a local minimum may
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be found. As an example, some NMPC methods will assume that only one
iteration is performed per sample, Li and Biegler (1989, 1990). Hence, it is
of interest to understand the consequences of not converting in terms of con-
trol performance loss. A fundamental result is given in Scokaert et al (1999),
where it is shown that feasibility and descent (reduction in cost function
compared to the control trajectory computed at the previous sample) is suf-
ficient for asymptotic stability of NMPC provided that terminal constraints
are included in the formulation. Hence, optimality is not required. In the
same spirit, a computationally efficient and robust implementation of these
ideas are pursued in Lazar et al (2008), and also exploited in the context of
approximate NMPC Bemporad and Filippi (2003); Johansen (2004).

1.2.3.3 Example: Compressor Surge Control

Consider the following 2nd-order compressor model Greitzer (1976); Grav-
dahl and Egeland (1997) with x1 being normalized mass flow, x2 normalized
pressure and u normalized mass flow through a close coupled valve in series
with the compressor

ẋ1 = B (Ψe(x1)− x2 − u) (1.49)

ẋ2 =
1

B
(x1 − Φ(x2)) (1.50)

The following compressor and valve characteristics are used

Ψe(x1) = ψc0 +H

(

1 + 1.5
(x1
W

− 1
)

− 0.5
(x1
W

− 1
)3
)

Φ(x2) = γsign(x2)
√

|x2|

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 and W = 0.25. The control
objective is to avoid surge, i.e. stabilize the system. This may be formulated
as

ℓ(x, u) = α(x − x∗)T (x− x∗) + κu2

S(x) = Rv2 + β(x− x∗)T (x− x∗)

with α, β, κ, ρ ≥ 0 and the set-point x∗1 = 0.40, x∗2 = 0.60 corresponds to
an unstable equilibrium point. We have chosen α = 1, β = 0, and κ = 0.08.
The horizon is chosen as T = 12, which is split into N = p = 15 equal-
sized intervals, using piecewise constant control input parameterization. Valve
capacity requires the constraint

0 ≤ u(t) ≤ 0.3 (1.51)

to hold, and the pressure constraint
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x2 ≥ 0.4− v (1.52)

avoids operation too far left of the operating point. The variable v ≥ 0 is
a slack variable introduced in order to avoid infeasibility and R = 8 is its
weight in the cost function.

A nonlinear optimization problem is formulated using direct single shoot-
ing where explicit Euler integration with step size 0.02 is applied to solve the
ODE. Due to the unstable dynamics, this may not be the best choice, but it
is sufficient for this simple example.

The NLP solution is shown in Figure 1.1 as a function u∗(x). The corre-
sponding optimal cost V ∗(x) is shown in Figure 1.2, and simulation results
are shown in Figure 1.3, where the controller is switched on after t = 20. We
note that it quickly stabilizes the deep surge oscillations.
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Fig. 1.1 Feedback control law.
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Fig. 1.2 Optimal costs of the feedback control law.

1.2.4 Extensions and Variations of the Problem

Formulation

1.2.4.1 Infeasibility Handling and Slack Variables

Feasibility of the NMPC optimization problem is an essential requirement for
any meaningful state and reference command, and it is importance in practice
that the NMPC optimization problem is formulated such that feasibility is
ensured as far as possible by relaxing the constraints when needed and when
possible. Obviously, physical constraints like input saturation can never be
related, but operational constraints can generally be relaxed according to
certain priorities under the additional requirement that safety constraints are
fulfilled by a separate system (like an emergency shutdown system, pressure
relief valves, or by functions in a decentralized control system). Stability-
enforcing terminal constraints may also be relaxed in practice, or even skipped
completely, since they tend to be conservative and often not needed when
the NMPC is otherwise carefully designed, in particular for open loop stable
systems.

A general way to reformulate an optimization problem to guarantee fea-
sibility is to use slack variables (e.g. Vada et al (1999)). Taking the fairly
general NLP formulation (1.21)-(1.23) as the starting point, we reformulate
it in the following way
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V ∗
s (θ) = min

z,s,q
V (z, θ) + ||Wss||1 + ||Wqq||1 (1.53)

subject to

G(z, θ) ≤ s (1.54)

H(z, θ) = q (1.55)

s ≥ 0 (1.56)

where Ws � 0 and Wq � 0 are weight matrices of appropriate dimension.
They are usually chosen such that the two latter penalty terms of (1.53)
dominates the first term in order to ensure that the feasibility constraints are
not relaxed when not needed.

1.2.4.2 Robustness

Practical industrial experience shows that MPC tend to be inherently robust,
Qin and Badgwell (1996, 2000), even without any particular consideration
in the design phase beyond ensuring the accuracy of dynamic models and
formulating realistic specifications in terms of operational constraints and
cost function weights. In addition, mechanisms to handle steady state model
errors (integral action like mechanisms) are usually implemented.

As a contrast to this practical experience, it is shown by examples, Grimm
et al (2004), that when the NMPC problem involves state constraints, or ter-
minal constraints in combination with short prediction horizons, the asymp-
totic stability of the closed-loop may have not be robust. A necessary con-
dition for lack of robustness is that the value function and state feedback
law are discontinuous, Grimm et al (2004), while at the same time lack of
continuity does not necessarily lead to lack of robustness, Lazar et al (2007).

There exist a wide range of NMPC formulation that include robustness
into the formulation of the optimization problem. One can mainly distinguish
between three types of approaches; stochastic NMPC, min-max NMPC, and
mechanisms to avoid steady-state errors.

There are two formulations of min-max NMPC: the open-loop and the
closed-loop formulation (see Magni and Scattolini (2007) for review of the
min-max NMPC approaches). The open-loop min-max NMPC (Michalska
and Mayne (1993); Limon et al (2002); Magni and Scattolini (2007)) guaran-
tees the robust stability and the robust feasibility of the system, but it may be
very conservative since the control sequence has to ensure constraints fulfill-
ment for all possible uncertainty scenarios without considering the fact that
future measurements of the state contain information about past uncertainty
values. As a result, the open-loop min-max NMPC controllers may have a
small feasible set and a poor performance because they do not include the
effect of feedback provided by the receding horizon strategy of MPC.
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Most min-max MPC robustness approaches assume a fairly simple additive
uncertainty model of the form

xk+1 = F (xk, uk) + wk (1.57)

where some bound on the unknown uncertainty wk is assumed. The conserva-
tiveness of the open-loop approaches is overcome by the closed-loop min-max
NMPC (Magni et al (2003); Magni and Scattolini (2007); Limon et al (2006)),
where the optimization is performed over a sequence of feedback control poli-
cies. With the closed-loop approach, the min-max NMPC problem represents
a differential game where the controller is the minimizing player and the
disturbance is the output of the maximizing player. The controller chooses
the control input as a function of the current state so as to ensure that the
effect of the disturbance on the system output is sufficiently small for any
choice made by the maximizing player. In this way, the closed-loop min-max
NMPC would guarantee a larger feasible set and a higher level of performance
compared to the open-loop min-max NMPC (Magni et al (2003)).

Stochastic NMPC formulations are based on a probabilistic description of
uncertainty, and can also be characterized as open-loop Cannon et al (2009);
Kantas et al (2009) and closed-loop Goodwin et al (2009); Arellano-Garcia
et al (2007) similarly to min-max robust NMPC as described above. They also
share similar challenges due to significantly increased computational complex-
ity when compared to nominal NMPC formulations.

The reformulation of nonlinear models as Linear Parameter Varying (LPV)
models allows for the use of linear and bi-linear matrix inequality formulations
of robust NMPC, Angeli et al (2000); Casavola et al (2003); Wan and Kothare
(2004). The embedding of nonlinear systems into the class of LPV models

xk+1 = A(pk)xk +B(pk)uk + w(pk) (1.58)

leads to loss of information in the model that leads to more conservative
robust control. However, using tools of semi-definite and convex program-
ming, Boyd et al (1994), the LPV re-formulation allows for the computa-
tional complexity to be significantly reduced in many cases. In (1.58), pk is
a parameter whose value is known to belong to some bounded set, and some
approaches also assume that its time-derivative has a known bound, and the
LPV re-formulation clearly allows a richer class of uncertainty to be modeled,
compared to (1.57).

Steady-state control errors may result if there are steady-state model er-
rors. While linear control design offers several tools to deal with this problem
(including integral action, integrating models in linear MPC, and others),
not all of them are directly transferable to nonlinear systems. The commonly
used cure for steady-state errors in MPC, which can be directly transferred
to NMPC, appears to be the use of a state estimator or observer that esti-
mates an input or output disturbance for direct compensation in the NMPC
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cost function, Muske and Badgwell (2002); Pannocchia and Rawlings (2003);
Pannocchia and Bemporad (2007); Borrelli and Morari (2007).

1.2.4.3 Observers and Output Feedback

Most formulations of nonlinear MPC assume state feedback. They are usually
based on state space models, e.g. Balchen et al (1992); Foss and Schei (2007),
although certain black-box using discrete-time nonlinear input/output mod-

els have also been proposed Nørgaard et al (2000); Åksesson and Toivonen
(2006). Since all states are usually not measured, any implementation of
NMPC based on a state space model will require a state estimator, which
is often a critical component of an NMPC Kol̊as et al (2008). State space
models have the advantage that they are most conveniently based on first
principles.

Although practical rules of thumb for observer design such as separation of
time-scales (typically one order of magnitude faster state estimator relative
to the control loop response time) tend to be applicable in practical imple-
mentations also for NMPC, there also exist a number of rigorous theoretical
results on the stability of the combination of observers with NMPC, see Find-
eisen et al (2003b) for an overview. Although a general separation principles
does not exists for NMPC, there are some results in this direction, Findeisen
et al (2003a); Adetola and Guay (2003); Messina et al (2005); Roset et al
(2006).

1.2.4.4 Mixed-integer MPC

General NMPC formulations based on nonlinear models suffer from the fact
that it is hard to verify whether the underlying optimization problem is con-
vex or not, such that in general it must be assumed to be non-convex. At the
same time, all practical optimization solvers will assume some form of local
convexity and guarantee convergence only to good initial guesses for the solu-
tion. This challenge will be further discussed in section 1.4. On the other hand,
NMPC based on piecewise linear (PWL) models and cost functions will in
general lead to mixed-integer linear programs (MI-LP) for which there exists
solvers that guarantee global convergence, Tyler and Morari (1999); Bem-
porad and Morari (1999). The equivalence between a wide class of hybrid
systems models, mixed logic models and PWL models, Heemels et al (2001),
makes this approach attractive in many practical applications. Despite its
applicability and importance, we only remark that the MI-LP theory and
software are well developed, and refer to the references above and the large
literature on MI-LP, Williams (1999).
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1.2.4.5 Decentralized and Distributed NMPC

Recently, several approaches for decentralized and distributed implementa-
tion of NMPC algorithms have been developed. A review of architectures
for distributed and hierarchical MPC can be found in Scattolini (2009). The
possibility to use MPC in a decentralized fashion has the advantage to reduce
the original, large size, optimization problem into a number of smaller and
more tractable ones.

In Magni and Scattolini (2006), a stabilizing decentralized MPC algorithm
for nonlinear systems consisting of several interconnected local subsystems is
developed. It is derived under the main assumptions that no information can
be exchanged between local control laws, i.e. the coupling between the sub-
systems is ignored, and only input constraints are imposed on the system. In
Dunbar and Murray (2006), it is supposed that the dynamics and constraints
of the nonlinear subsystems are decoupled, but their state vectors are cou-
pled in a single cost function of a finite horizon optimal control problem. In
Keviczky et al (2006), an optimal control problem for a set of dynamically
decoupled nonlinear systems, where the cost function and constraints couple
the dynamical behavior of the systems, is solved.

1.3 NMHE Optimization Problem Formulation

In this section we consider the formulation of the NMHE optimization prob-
lem, and we follow as similar organization as section 1.2, with focus on the
formulation of the optimization problem and the link between fundamental
properties such as observability, detectability and existence and uniqueness
of the solution.

1.3.1 Basic Problem Formulation

The state estimation problem is to determine the current state based on a
sequence of past and current measurements at discrete time instants, and the
use of a dynamic model. For simplicity, we will assume data are available
via synchronous sampling. Extension to be more general situation when data
from the different sensors and data channels are asynchronous are concep-
tually straightforward and does not lead to any fundamental complications,
but the mathematical notation requires many more indices and becomes un-
necessarily tedious for an introduction to the topic. The problem can be
treated by careful discretization of the continuous-time system to take asyn-
chronous data into account, or a more pragmatic approach would be to rely
on digital signal processing technique of interpolation and extrapolation for
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pre-processing the data before used in the NMHE in order to artificially pro-
vide synchronized data as required at each sampling instant, Proakis and
Manolakis (1996).

At the time tk corresponding to the discrete time index k we consider a set
of N + 1 sampling instants Ts = {tk−N , tk−N+1, ...., tk}, where the following
synchronized window of output and input data are available

Yk = col(y(tk−N ), y(tk−N+1), ....., y(tk))

Uk = col(u(tk−N ), u(tk−N+1), ....., u(tk))

where y(t) ∈ Rr and u(t) ∈ Rm. We assume without loss of generality that
sampling is periodic, i.e. the horizon T = tk− tk−N and the sampling interval
ts = ti − ti−1 are constant. The inputs and outputs may be related by an
ODE model

d

dt
x(t) = f(x(t), u(t), w(t)) (1.59a)

y(t) = h(x(t), u(t)) + v(t) (1.59b)

with unknown initial condition x(tk−N ) ⊂ Rn. The variable w includes un-
known model errors and disturbances, and v includes unknown additive mea-
surement errors. In addition, one may have available a priori information
about x(t) in the form of constraints on states and uncertainty

col(x(t), w(t), v(t)) ∈ X ×W × V, t ∈ [tk−N , tk] (1.60)

for some compact sets X,W and V . The constraints may result from oper-
ational knowledge of the system, or physical properties of the states (such
as chemical composition never being negative at any point in time). More
generally, such a priori knowledge may incorporate more complex statements
that motivates a more general constraint formulation

C(x(t), w(t), v(t), t) ≤ 0, t ∈ [tk−N , tk] (1.61)

The above constraint could incorporate time-varying information and state-
ments that involves the interaction between two ore more variables - for
example that a gas pressure is always below a certain threshold, expressed
through the product of gas mass and temperature through the ideal gas law.
One may also have a priori information that is not linked to a particular
time instant, like that the average value of a certain variable is known to stay
between certain upper and lower bounds or that the measurement noise has
zero mean, which can be expressed as

∫ tk

tk−N

c(x(t), w(t), v(t))dt ≤ 0 (1.62)
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The state estimation problem is essentially to estimate x(tk) based on the
N+1 data samples, the model, and the a priori information given in the form
of constraints.

1.3.1.1 Observability

The concept of observability is essential in order to formulate and understand
the NMHE problem. In this section we will for convenience assume that
the dynamic model system (1.59) is discretized in the form of a state space
formulation

xk+1 = F (xk, uk, wk) (1.63a)

yk = h(xk, uk) + vk (1.63b)

with the convenient notation uk = u(tk), yk = y(tk), vk = v(tk), wk = w(tk).
In this section, we will neglect the constraints (1.60)-(1.62) since they are
not important for the observability concept. Furthermore, the process noise
vk and measurement noise wk will also be set to zero and neglected in this
section when defining the concept of observability. Note that by using the
discrete-time equation (1.63a) recursively with initial condition x(tk−N ) and
vk = 0 and wk = 0, one will uniquely determine x(t), t ≥ tk−N , including the
current state x(tk) that we want to estimate.

To express Yk as a function of xk−N and Uk under these conditions, denote
Fk(xk) = F (xk, uk, 0) and hk(xk) = h(xk, uk), and note from (1.63b) that
the following algebraic map can be formulated, Moraal and Grizzle (1995b):

Yk = H(xk−N , Uk) =











huk−N (xk−N )
huk−N+1 ◦ Fk−N (xk−N )

...
huk ◦ Fk−1 ◦ · · · ◦ Fk−N (xk−N )











(1.64)

Hence, without the presence of any uncertainty and constraints, the state esti-
mation problem is equivalent to the inversion of this set of nonlinear algebraic
equations, like in the case of a linear system when full rank of the observabil-
ity matrix is equivalent to observability. In order to better understand the
similarities between the linear and nonlinear case, consider the linear system
xk+1 = Axk +Buk with output yk = Cxk. The (1.64) corresponds to

Yk = CNxk−N + BNUk (1.65)

where the matrix CN is defined by
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CN =











C
CA
...

CAN











(1.66)

and BN is a matrix that contains blocks of the form CAiB. Clearly, the state
can be uniquely determined from the window of past inputs and outputs by
inverting the linear algebraic equations (1.65) if and only if CN has full rank.
It is well known from linear systems theory that rank(CN ) = rank(Cn) for
N ≥ n, where Cn is known as the observability matrix. Similarly, in the
nonlinear case, conditions that ensure that the inverse problem is well-posed
(Tikhonov and Arsenin (1977)) in the sense that the inverse of (1.64) exists, is
unique, and depends continuously on the data Uk and Yk are of fundamental
importance and essentially amounts to the concept of observability.

Definition 1 (Moraal and Grizzle (1995b)). The system (1.63) is N -
observable if there exists a K-function ϕ such that for all x1, x2 ∈ X there
exists a feasible Uk ∈ UN+1 such that

ϕ(||x1 − x2||2) ≤ ||H(x1, Uk)−H(x2, Uk)||2.

Definition 2 (Sui and Johansen (2010)). The input Uk ∈ U
N+1 is said

to be N -exciting for the N -observable system (1.63) at time index k if there
exists a K-function ϕk that for all x1, x2 ∈ X satisfies

ϕt(||x1 − x2||2) ≤ ||H(x1, Uk)−H(x2, Uk)||2.

From Proposition 2.4.7 in Abraham et al (1983), we have

H(x1, Uk)−H(x2, Uk) = Φk(x1, x2)(x1 − x2), (1.67)

where

Φk(x1, x2) =

∫ 1

0

∂

∂x
H((1− s)x2 + sx1, Uk)ds. (1.68)

An observability rank condition can be formulated similar to the linear case
outlined above (see also Moraal and Grizzle (1995b); Alessandri et al (2008);
Fiacco (1983) and others for similar results):

Lemma 2. If X and U are compact and convex sets, the functions F and h
are twice differentiable on X×U and the Jacobian matrix ∂H

∂x
(x, Uk) has full

rank (equal to n) for all x ∈ X and some Uk ∈ U
N+1, then the system is

N -observable and the input Uk is N -exciting for the system (1.63) at time
index k.

Proof (Sui and Johansen (2010)). Due to the observability rank condition be-
ing satisfied, ΦT

k (·)Φk(·) > 0 and the system of nonlinear algebraic equations
(1.67) can be inverted as follows:
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x1 − x2 = Φ+
k (x1, x2)

(

H(x1, Uk)−H(x2, Uk)
)

,

⇒ 1

π2
k(x1, x2)

‖x1 − x2‖2 ≤ ‖H(x1, Uk)−H(x2, Uk)
∥

∥

2
,

where πk(x1, x2) = ‖Φ+
k (x1, x2)‖. This proves that the conditions in Defini-

tions 1 and 2 hold with ϕ(s) = s/p2 where

p = sup
x1,x2∈X,Uk∈UN+1

||Φ+
k (x1, x2)|| (1.69)

is bounded due to F and h are twice differentiable on the compact set X×U.
⊓⊔

This condition is a natural generalization of the linear observability matrix
rank condition since

∂H

∂x
(x, Uk) = CN (1.70)

for a linear system, and the full rank condition of Cn is completely equivalent
to observability for N ≥ n. A fundamental difference is that in the nonlinear
case the rank of the matrix ∂H

∂x
(x, Uk) depends on both the current state

x and the current and past inputs Uk. This means that in the nonlinear
case, successful asymptotic state estimation may depend on state and input
trajectories, in strong contrast to the linear case where only the initial state
influences the transient behavior of the observer (neglecting the influence of
noise and disturbances in this discussion).

The role of the horizon parameter N can also be understood from the
above discussion. While N = n is generally sufficient for an estimate to be
computable for observable linear systems, the benefits of choosing N larger
is two-fold: The input data Uk may be N -exciting for a nonlinear system for
sufficiently large N , but not for N = n, and second, a larger N will improve
robustness to noise and uncertainty via a filtering effect. The possible dis-
advantages of choosing N very large are increased computational complexity
and too much filtering leading to slow convergence of the estimates.

Define the N -information vector at time index k as

Ik = col(yk−N , . . . , yk, uk−N , . . . , uk).

When a system is not N -observable, it is not possible to reconstruct ex-
actly all the state components from the N -information vector. However, in
some cases one may be able to reconstruct exactly at least some components,
based on the N -information vector, and the remaining components can be
reconstructed asymptotically. This corresponds to the notion of detectability,
where we suppose there exists a coordinate transform T : X → D ⊆ Rn,
where D is the convex hull of T(X):

d = col(ξ, z) = T(x) (1.71)
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such that the following dynamics are equivalent to (1.63) for any initial con-
dition in X and inputs in U,

ξk+1 = F1(ξk, zk, uk) (1.72a)

zk+1 = F2(zk, uk) (1.72b)

yk = g(zk, uk). (1.72c)

This transform effectively partitions the state x into an observable state z
and an unobservable state ξ. The following strong detectability definition is
taken from Moraal and Grizzle (1995a):

Definition 3. The system (1.63) is strongly N -detectable if
(1) there exists a coordinate transform T : X → D that brings the system in
the form (1.72);
(2) the sub-system (1.72b)-(1.72c) is N -observable;
(3) the sub-system (1.72a) has uniformly contractive dynamics, i.e. there
exists a constant L1 < 1 such that for all col(ξ1, z) ∈ D, col(ξ2, z) ∈ D and
u ∈ U, the function F1 satisfies

||F1(ξ1, z, u)− F1(ξ2, z, u)||′ ≤ L1||ξ1 − ξ2||′. (1.73)

with a suitable norm || · ||′.
It is remarked that since there is considerable freedom in the choice of

transform T and the norm || · ||′, the contraction assumption in part 3 of the
definition is not very restrictive. For linear systems, it is equivalent to the
conventional detectability definition.

Definition 4. The input Uk is said to be N -exciting for a strongly N -
detectable system (1.63) at time index k if it is N -exciting for the sub-system
(1.72b)-(1.72c) at time index k.

If the input Ut is not N -exciting at certain points in time, the state esti-
mation inversion problem (Moraal and Grizzle (1995b)) will be ill-posed (the
solution does not exist, is not unique, or does not depend continuously on
the data) or ill-conditioned (the unique solution is unacceptably sensitive to
perturbations of the data), and particular consideration is required to achieve
a robust estimator. Such modifications are generally known as regularization
methods, see Tikhonov and Arsenin (1977). A common method, Tikhonov
and Arsenin (1977), is to augment the cost function with a penalty on de-
viation from a priori information and makes the estimated solution degrade
gracefully when Ut is not N -exciting.

1.3.1.2 Objective Function and Constraints

The topic of this section is to formulate the NMHE problem in terms of a non-
linear optimization problem that is convenient to solve using numerical opti-
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mization. Defining Wk = col(wk−N ..., wk−1, wk), and Vk = col(vk−N , ..., vk)
we introduce the following cost function similar to Rao et al (2003)

J ′(xk−N , ..., xk,Wk, Vk) =
k
∑

i=k−N

L(wi, vi) + Zk−N (xk−N ) (1.74)

where L(w, v) is a stage cost typically of the least-squares type L(w, v) =
||w||2M + ||v||2Ξ for some M = MT � 0 and Ξ = ΞT � 0, there is a second
term Z that we will discuss shortly, and the minimization must be performed
subject to the model constraints

xi+1 = F (xi, ui, wi) (1.75)

yi = h(xi, ui) + vi (1.76)

and the additional constraints resulting from (1.60)-(1.62)

col(xi, wi, vi) ∈ X ×W × V, i = k −N, ..., k (1.77)

C(xi, wi, vi, ti) ≤ 0, i = k −N, ..., k (1.78)
k
∑

i=k−N

c(xi, wi, vi) ≤ 0 (1.79)

It is straightforward to eliminate the variables vi from this optimization prob-
lem, leading to

Φ∗
k−N = min

xk−N ,...xk,Wk

J(xk−N , ..., xk,Wk)

=

k
∑

i=k−N

L(wi, yi − h(xi, ui)) + Zk−N (xk−N ) (1.80)

subject to

xi+1 = F (xi, ui, wi), i = k −N, ..., k (1.81)

col(xi, wi, vi) ∈ X ×W × V, i = k −N, ..., k (1.82)

C(xi, wi, yi − h(xi, ui), ti) ≤ 0, i = k −N, ..., k (1.83)
k
∑

i=k−N

c(xi, wi, yi − h(xi, ui)) ≤ 0 (1.84)

By defining the solution function φ(i, Uk, xk−N ) for i ≥ k − N using (1.81)
recursively we can make further elimination of the nonlinear equality con-
straints (1.81) similar to the direct single shooting approach and re-define
the cost function and constraints as follows:
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min
xk−N ,Wk

J(xk−N ,Wk) =

k
∑

i=k−N

L(wi, yi−h(φ(i, Uk, xk−N ), ui))+Zk−N (xk−N )

(1.85)
subject to

col(xi, wi, vi) ∈ X ×W × V, i = k −N, ..., k

C(φ(i, Uk, xk−N ), wi, yi − h(φ(i, Uk, xk−N ), ui), ti) ≤ 0, i = k −N, ..., k
k
∑

i=k−N

c(φ(i, Uk, xk−N ), wi, yi − h(φ(i, Uk, xk−N ), ui)) ≤ 0 (1.86)

The simple choice Z(·) = 0 means that the state estimate is defined as the
best least squares match with the data on the horizon. This means that
no information from the data before the start of the horizon is used in the
estimation, which is a clear weakness especially when the information content
in the data is low due to lack of excitation, noise and other uncertainty. In
other words, the estimation formulation contains no other mechanisms to
introduce filtering of noise or regularization than to increase the horizon
N , which also increases the computational complexity of the optimization
problem and may still be insufficient.

In order to improve our ability to tune the NMHE and systematically
introduce filtering of the state estimates, the term Z(·) in the formulation may
be used as an arrival-cost estimate as discussed in e.g. Rao et al (2003) or in an
ad hoc way to penalize deviation from an a priori estimate as in e.g Alessandri
et al (2008); Sui and Johansen (2010); Alessandri et al (2003). Arrival cost
estimation is discussed further in section 1.3.1.3, and a link between arrival
cost estimation and the approach of Alessandri et al (2008) is illustrated in
Poloni et al (2010).

We remark that the formulations make no particular assumptions on the
uncertainty, and minimizes the impact of uncertainty on the estimates in a
least-squares sense. Introduction of stochastic models can be envisioned and
lead to better estimates in some cases, Lima and Rawlings (2010).

1.3.1.3 Arrival-cost Estimates

The term Z(·) in the cost function J defined in (1.80) may be used to make
the finite (moving) window cost function J approximate the full (still finite)
window cost (Rao et al (2003))

J ′′(xk−N , ..., xk,Wk) =

k
∑

i=0

L(wi, yi − h(xi, ui)) + Γ (x0) (1.87)

such that
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Zk−N (xk−N ) ≈
k−N−1
∑

i=0

L(wi, yi − h(xi, ui)) + Γ (x0) (1.88)

where Γ (x0) is such that Γ (x0) = 0 for the a priori most likely estimate of x0,
and Γ (x) ≻ 0 for other values. The motivation for more closely approximating
the full window cost (as opposed to a moving window cost) is to capture as
much information as possible from time index i = 0, 1, ...., k −N − 1. Using
arguments of dynamic programming, Rao et al (2003), an exact arrival cost
completely captures the information up to time index k−N − 1. This would
lead to more accurate estimates through improved filtering.

The effect of the arrival cost can be understood by comparing the moving
horizon approach to Extended Kalman Filtering (EKF); Gelb (2002). In an
EKF the information in past data is summarized in the covariance matrix
estimate. Under assumptions that include linearity of the system and the
noise and disturbances being Gaussian white noise with known covariances
that are reflected in a quadratic cost function, it is known that the Kalman
filter is an optimal filter, Gelb (2002), that provides states estimates with
minimum variance. An EKF is an approximate sub-optimal filter that allows
for nonlinearities and makes certain simplifying computations such neglect-
ing higher order statistics and higher order (nonlinear) terms. In a similar
manner, the NMHE with an arrival cost estimate captures the information
of data until the start of the window in the arrival cost. Unfortunately, it is
hard to find an explicit representation of the arrival cost for nonlinear sys-
tems, and practical methods attempts to approximate the arrival cost. The
use of covariance matrix estimates from EKF and similar ideas is a useful
way to define the arrival cost, Rao et al (2003):

Zk(x) = (x− x̂k)
TΠ−1

k (x− x̂k) + Φ∗
k (1.89)

The matrix Πk is assumed to be non-singular such that its inverse is well
defined, and obtained by solving the recursive Riccati-equation

Πk+1 = GkQkG
T
k +AkΠkA

T
k −AkΠkC

T
k

(

Rk + CkΠkC
T
k

)−1
CkΠkA

T
k

with some given positive definite matrix as initial condition Π0. The ma-
trices Ak, Gk, Ck are defined as linearizations about the NMHE estimated
trajectory:

Ak =
∂F (x̂k, uk, ŵk)

∂x
(1.90)

Gk =
∂F (x̂k, uk, ŵk)

∂w
(1.91)

Ck =
∂h(x̂k, uk)

∂x
(1.92)
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and for simplicity we assume Qk and Rk are defined through a quadratic cost
function L(w, v) = wTQ−1

k w + vTR−1
k v. More generally, Qk and Rk may be

defined as Hessians of L as in Rao et al (2003).
It is well known that alternative nonlinear Kalman Filters may perform

better than the EKF in many situations. In the context of NMHE arrival cost
estimation some useful methods are sample based filters (Ungarala (2009)),
particle filtes (Lopez-Negrete et al (2009)), and Unscented Kalman Filtering
(UKF) (Qu and Hahn (2009)).

1.3.1.4 Combined State and Parameter Estimation

Many practical estimation problems are characterized by both states and
parameters being unknown or uncertain. In Kalman filtering (Gelb (2002))
and observer design, a common approach to the joint state and parameter
estimation problem is to augment the state space with constant parameters.
Assuming a vector of constant parameters θ∗ appears in the model equations:

ξi+1 = Fm(ξi, ui, ωi, θ
∗) (1.93)

yi = hm(ξi, ui, θ
∗) + vi (1.94)

with the new notation where ξi is the state and ωi is the disturbance. An
augmented state space model assumes that the parameters are constant or
slowly time-varying by the following model of the unknown parameter vector

θi+1 = θi + ̺i (1.95)

Combining (1.93)-(1.94) with (1.95) leads to

(

ξi+1

θi+1

)

=

(

Fm(ξi, ui, ωi, θi)
θi + ̺i

)

(1.96)

yi = hm(zi, ui, θi) + vi (1.97)

With the augmented state x = col(ξ, θ) and augmented disturbance vector
w = col(ω, ̺) we observe that these equations are in the assumed form (1.75)-
(1.76) such that the NMHE algorithm formulation can be applied without
any modifications.

It is common to encounter combined state and parameter estimation prob-
lems where convergence conditions of uniform observability or persistence of
excitation are not fulfilled, Moraal and Grizzle (1995a); Sui and Johansen
(2010). In such cases various mechanisms of regularization should be im-
plemented to get graceful degradation of the estimation when insufficient
information is available to determine the estimates. The use of a term in the
cost function that preserves the history and makes the observer degrade to an
open-loop observer is one such mechanism, that can be combined with more
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advanced monitoring of the Hessian matrix of the cost function to detect and
resolve lack of excitation, Sui and Johansen (2010).

1.4 Numerical Optimization

For simplicity of notation, we assume in this section that the NMHE or
NMPC problem is formulated as a general nonlinear programming problem
at each time instant

min
z
V (z) subject to G(z) ≤ 0, H(z) = 0 (1.98)

where z is a vector with the unknown decision variables. In practice, as im-
plemented in most numerical solver software, it will be important to exploit
structural properties of the constraints and objective functions such that fur-
ther separation of the functions G and H into simple bounds (zmin ≤ z ≤
zmax), linear constraints and ”truly” nonlinear constraints is usually made
for efficient implementation. For simplicity of presentation, we does not make
such separation here.

1.4.1 Problem Structure

The choice of numerical optimization solver strategy will have significant im-
pact on both the need for computational resources and the quality of the
solution in NMPC and NMHE. In this context, computational resources usu-
ally means the CPU time required for the solution to converge to meet the
tolerance requirements, while quality of solution is related to lack of conver-
gence or high sensitivity to initial guesses.

There are several features of NMPC and NMHE problems that are relevant
to consider

• Formulation of the numerical optimal control or estimation problem, e.g.
sequential or simultaneous approaches. The sequential approach leads to
a smaller, denser problem with a computationally complex cost function
usually without nonlinear equality constraints, while the simultaneous ap-
proach leads to a larger, more structured, sparse problem with nonlinear
equality constrains and relatively simple cost and constraint functions to
evaluate.

• NMPC and NMHE solves a sequence of numerical optimal control or esti-
mation problems, where the parameters of the problem are usually subject
to fairly small changes from one run to the next. There is usually benefits
of warm starting the next optimization run using the solution and other
internal data from the previous run as initial guesses, data or conditions.
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• Since the optimization will be repeated at the next sample, and the opti-
mization problem is formulated using uncertain data, it may not always be
essential that the solver has converged (or equivalently that the tolerances
may not need to be very strict) due to the forgiving effect of feedback.
However, a feasible solution is generally required at each run in order to
operate the control and monitoring systems. This means that problems
tend to be re-formulated using slack variables with some prioritization of
constraints that can be relaxed, and that is it generally desirable to start
the next optimization run with a feasible initial guess generated from the
previous run such that even with a limited number of iterations one can
guarantee feasibility.

• Safety and reliability are essential features of most control and monitoring
systems, which means that post-optimal analysis and checks on the quality
of the solution must usually be implemented. Issues such as non-convexity
and non-smoothness of models and constraints are essential to understand
and take into account.

Although all nonlinear MPC and MHE problems have certain features in
common, they may also differ considerably with respect to size, models, cost
functions and constraints. This means that there will not be a single numerical
method that will be the best, in general. Below, we briefly outline some
commonly used numerical methods with emphasis on sequential quadratic
programming and interior point methods. We point out that there exist a
wide range of alternative methods that may perform better in certain types
of problems, like derivative-free methods (e.g. Conn et al (2009)) that may
be better suited if the computation of gradients is expensive or not possible
to achieve accurately.

1.4.2 Nonlinear Programming

Newton’s method for iterative solution of nonlinear algebraic equations is
the backbone of most numerical optimization methods. For a nonlinear vec-
tor equation f(z) = 0, Newton’s method starts with an initial guess vector z0

and generates a sequence of guesses zk indexed by the integer k = 1, 2, 3, ....
according to the following formula that results from linearization using Tay-
lor’s theorem and truncation:

f(zk) +∇T
z f(z

k)(zk+1 − zk) = 0 (1.99)

Eq. (1.99) defines a set of linear algebraic equations that can be solved for
zk+1 using numerical linear algebra, which is the workhorse at the core of
nonlinear programming and is the main contribution to computational com-
plexity in addition to the computation of the function f and its gradient
(Jacobian matrix) ∇zf . As Newton’s method is based on linearization, it has
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only local convergence, but with a quadratic convergence rate, Nocedal and
Wright (1999).

Newton’s method is used in nonlinear programming to solve nonlinear
algebraic equations closely related to the first order optimality conditions of
(1.98), known as the Karush-Kuhn-Tucker (KKT) conditions Nocedal and
Wright (1999)

∇zL(z
∗, λ∗, µ∗) = 0 (1.100)

H(z∗) = 0 (1.101)

G(z∗) ≤ 0 (1.102)

µ∗ ≥ 0 (1.103)

Gi(z
∗)µ∗

i = 0, i = 1, ...., nG (1.104)

where nG is the number of inequality constraints and the Lagangian function
is defined as

L(z, λ, µ) = V (z) + λTH(z) + µTG(z) (1.105)

Obviously, the KKT conditions also involves inequalities which means that
Newton’s method cannot be applied directly. The different nonlinear pro-
gramming methods differ conceptually in the way the KKT conditions, being
mixed equations and inequalities, are used to formulate a sequence of nonlin-
ear equations. The different nonlinear programming methods also differ with
respect to approximations used for the gradient ∇zf of the resulting set of
equations. Since the evaluation of (1.100) already requires gradient compu-
tations (for the Jacobian matrix of the Lagrangian ∇zL) in the formulation
of the equations to be solved, the computation of ∇zf generally requires the
expensive computation or approximation of the matrix ∇2

zL, known as the
Hessian matrix of the Lagrangian.

1.4.2.1 Sequential Quadratic Programming (SQP)

SQP methods linearize the KKT conditions (1.100)-(1.104) at the current
iterate zk, leading to a set of linear conditions that can be interpreted as
the KKT conditions of the following quadratic program (QP), Nocedal and
Wright (1999):

min
z
V k
QP (z) (1.106)

subject to

H(zk) +∇T
z H(zk)(z − zk) = 0 (1.107)

G(zk) +∇T
z G(z

k)(z − zk) ≤ 0 (1.108)

with the cost function
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V k
QP (z) = ∇T

z V (zk)(z − zk) +
1

2
(z − zk)T∇2

zL(z
k, λk, µk)(z − zk)

(1.109)

This QP interpretation is highly useful since it provides a practical way to
deal with the fact that the KKT conditions include inequalities, which are
not straightforward to solve using Newton’s method directly. The vast knowl-
edge and numerical methods of solving QP problems, typically using active
set methods, Nocedal and Wright (1999); Gill et al (1981), is exploited at
this point. Active set methods replace inequality constraints with equality
constraints based on an active set assumption that is improved iteratively as
the method converges towards an optimal solution.

However, there are three major challenges remaining:

• The first key challenge is related to the Hessian matrix ∇2
zL(·). Problems

arise if this matrix is not positive definite such that the QP is not convex
and a global optimum may not exist or is not unique. In the context of
NMPC or NMHE, problems will also arise if the computational complexity
of computing the Hessian is beyond the CPU resources available. Approxi-
mations such as quasi-Newton and Gauss-Newton methods are commonly
used to approximate the Hessian from the Jacobian, see below, in a positive
definite form.

• The second key challenge is related related to the accuracy of the under-
lying linearizations (or equivalently, the local quadratic approximations of
the QP to the NLP). In order to have control over this issue, it is common
to solve the QP to generate a search direction only, and then generate
the next iterate zk+1 not as the minimum of the QP defined above, but
through a search procedure along this direction. Common search proce-
dures are line search and trust region methods, as outlined below.

• The third key challenge is related to feasibility. To ensure convergence it is
common to use a merit function to control the step size length in both line
search and trust region methods. The merit function adds a penalty on
constraint violations to the original cost function to ensure that the next
iterate moves towards a combined objective of reducing the cost function
and being feasible.

Quasi-Newton methods approximate the Hessian of the Lagrangian by
an update formula that only requires computation of the Jacobian. Common
methods, such as the BFGS update, Nocedal and Wright (1999), leads to
significant computational reduction and ensures that the Hessian approxima-
tion is positive definite. The price to pay is that the convergence rate may
no longer be quadratic, but typically only super-linear, Nocedal and Wright
(1999).

Gauss-Newton methods are particularly useful for least-squares type
of problems, like NMHE and certain NMPC formulations, where the cost
function is the squared norm of some nonlinear functions since a reliable
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estimate of the Hessian can be computed directly from the Jacobian as the
product of the Jacobian and its transpose, Nocedal and Wright (1999).

Line search methods are designed to account for the fact that the QP is
only a locally valid approximation. As the name indicates, one performs a one-
dimensional search in the descent direction computed by the QP (solution) to
ensure that sufficient descent of the actual merit function is achieved; Nocedal
and Wright (1999).

Trust region methods define a maximum step length for the next iterate
based on a trust region, where the linearization is sufficiently accurate. This
aims to ensure that the next iterate is well defined and accurate, and the
size of the trust region is adapted to ensure that the merit function reduction
predicted by the QP is sufficiently close to the actual merit function reduction,
Conn et al (2000); Wright and Tenny (2004).

1.4.2.2 Interior Point Methods (IP)

Interior point methods deal with the inequality constraints of the KKT con-
ditions in a fundamentally different way than SQP methods. The KKT condi-
tions concerning the inequality constraints, in particular (1.104), is replaced
by a smooth approximation (Wright (1997); Diehl et al (2009)):

Gi(z
∗)µ∗

i = τ, i = 1, ...., nG (1.110)

Solving the resulting set of algebraic nonlinear equations with Newton’s meth-
ods is equivalent to a solution of the following appoximate problem, where
the inequality constraints are handled by a log(·) barrier function:

min
z

(

V (z)− τ

nG
∑

i=1

log (−Gi(z))

)

subject to H(z) = 0 (1.111)

The parameter τ > 0 parameterizes a central path in the interior of the fea-
sible region towards the optimum as τ → 0, which motivates the name of IP
methods. Once the solution for a given τ > 0 is found, the parameter τ can
be reduced by some factor in the next Newton iteration. The practical imple-
mentation of an IP method will typically use Newton’s method to compute
a search direction. Challenges related to the computation of the Hessian ma-
trix and limited validity of the linearization of the Newton method, remain
similar to SQP, and the ideas of quasi-Newton methods, merit functions, line
search and trust regions are relevant and useful also for IP methods.
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1.4.2.3 Linear Algebra

At heart of both the QP sub-problems of SQP and the Newton-step of IP
methods are the solution of a set of linear algebraic equations. Efficiency of
the numerical optimization solver heavily depends on the efficiency of solving
this problem, since it will be repeated many times towards the solution of the
NLP at each sampling instant of an NMPC or NMHE. Exploiting structural
properties is essential.

Depending on the solution strategy and properties of the problem, such
structural properties are often related to positive definiteness of the Hes-
sian (approximation), sparseness and block-diagonal structure of the linear
systems of equations, and what information from the previous optimization
run can be used to initialize the next run. Using factorization methods one
may eliminate algebraic variables and operate in reduced spaces to save com-
putations. Being able to efficiently maintain and update factorized matrices
between the various iterations is usually essential to implement this. Although
this is essential in any practical implementation of NMHE and NMPC, it is
a fairly complex bag of tricks and tools that we consider outside the scope
of this introduction. Instead, we refer to excellent and comprehensive treat-
ments in Nocedal and Wright (1999); Diehl et al (2009); Gill et al (1997,
1981) and the references therein.

1.4.3 Warm Start

The NLP problem at one sampling instant is usually closely related to the
NLP problem at the previous sampling instant in NMPC and NMHE prob-
lem, since the sampling interval is usually short compared to the dynamics of
the plant and the controller. Assuming the reference signals and other input
to the controller changes slowly, this means that the solution in terms of past
state trajectories (for MHE problems) or future input and state trajectories
(for MPC problems) can be time shifted one sampling period and still provide
a reasonably accurate solution to the next NLP. Assuming no uncertainty in
MPC problems, this is a perfectly valid assumption and is commonly used
to guarantee feasibility at the next step in stability arguments, e.g Scokaert
et al (1999); Mayne et al (2000). Even without time-shifting, the previous
solution itself also provides a good initialization for warm start purposes in
NMPC, Boch et al (1999); Diehl et al (2004).

Unlike SQP methods, IP methods can usually not make effective use of
initial guesses of the solution due to the reformulation of the KKT conditions
that follows the parameterized center path controlled by the parameter τ > 0
that is sequentially reduced towards zero. This does not necessarily imply that
IP methods are less suited for NMPC and NMHE problems, in particular for
large scale problems where IP methods have advantages that may compensate
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for this shortcoming. Modified IP methods that can efficiently incorporate
warm start is a current research topic, Gondzio and Grothey (2008); Shahzad
et al (2010).

Warm start is potentially most efficient when including data beyond just
the solution point, but also consider the internal data of the optimization al-
gorithm such as initial estimates of the Hessian approximation (in case exact
Hessians are not computed), or initial estimates of factorizations of the Hes-
sian (approximation), initial estimates of optimal active sets, and other data.
This is in particular a challenge when the dimensions and structure of these
internal data will change from one sample to the next. This may for example
be the case in the simultaneous formulations (in particular direct collocation)
of numerical optimal control (see section 1.2.2), since the discretization may
be changed from one sample to the next, in general. One must also have in
mind that simultaneous formulations require that both state and control tra-
jectories are initialized, while sequential formulations only require the control
trajectory initialization. What is most beneficial will depend on the accuracy
of the available information for initialization, amongst other things. We refer
to Diehl et al (2009); Houska et al (2010) and the references therein for a
deeper treatment of this topic.

1.4.4 Computation of Jacobians and Hessians

The computation of the Jacobians of the cost and constraint functions is
often the main computational cost of numerical optimization methods, and
even fairly small inaccuracies in the calculation of the Jacobians due to may
lead to severe convergence problems.

Simultaneous approaches offer advantages over sequential approaches with
respect to Jacobian computations:

• The prediction horizon is broken up into several intervals where ODE solu-
tions are computed from given initial conditions. Since these intervals will
be shorter than the single interval of a single shooting approach, numerical
errors due to the ODE solver tend to accumulate less.

• Implicit ODE solvers, which generally have more stable numerical proper-
ties than explicit solvers, can in general be used in simultaneous approach.

• Simultaneous approaches are characterized by simpler cost and constraint
functions, where automatic differentiation is more easily exploited to avoid
numerical Jacobian computation errors, see section 1.4.4.2.

The numerical challenges are in particular important to consider for plants
that are unstable or marginally stable. Like in linear MPC, there may be
advantages of pre-stabilizing an open-loop unstable plant model with a feed-
back compensator before used in NMPC or NMHE, Cannon and Kouvaritakis
(2005); Sui et al (2010).
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1.4.4.1 Finite Difference

The finite difference method approximates the (i, j)-th element of the Jaco-
bian of a vector function f(z) as

(∇zf(z))i,j ≈ fi(zj + δ)− fi(zj)

δ
(1.112)

for some small δ > 0. If δ is too large there will be inaccuracies due to the
nonlinearity of fi, since the method computes the average slope between two
points. If the two points are not infinitely close and the function is not linear,
there will be a ”nonlinearity error”. If δ is too small, any finite numerical error
ε1 in the computation of fi(zj+δ) and ε2 in the computation of fi(zj) will lead
to an error ǫ = (ε1 − ε2)/δ in the computation of the derivative. Obviously,
this error goes to infinity when δ → 0, so a tradeoff between these errors
must be made. It should be noticed that the finite difference approximation
error ǫ depends on the difference between the errors in the two point-wise
evaluations of fi. This means that systematic errors (i.e. the same error in
both ε1 and ε2) will have a much smaller effect than a random error of the
same magnitude. Practical experience shows that the use of variable-step
(adaptive) ODE solvers tend to give a small random numerical error, while
the use of fixed-step ODE solvers tend to give a larger systematic error, but
even smaller random error. For the reasons described above, one may find
that a fixed-step ODE solver leads to considerably smaller error in finite
difference Jacobian computations and performs better with less convergence
problems in many numerical methods for NMPC and NMHE.

It is also worthwhile to remind the reader that scaling of all variables
involved in the optimization problem to the same order of magnitude is in
many cases a pre-requisite for numerical nonlinear optimization methods to
work satisfactorily. This is evident in the context of finite difference Jacobian
computations, but also relevant for other numeric computations.

As a final remark, it is possible to exploit square-root factorizations (like
Cholesky factorization) for improved numerical accuracy and computational
complexity in finite difference computations, Schei (1997).

1.4.4.2 Symbolic and Automatic Differentiation

The most accurate result and computationally most efficient approach is to
calculate gradients by symbolically differentiating the cost and constraint
functions. Doing this by hand, or even using symbolic computations in Mat-
lab, Maple or Mathematica, may easily become intractable for NMPC and
NMHE problems that may contain a large number of variables, equations
and inequalities. A more convenient solution is to rely on so-called automatic
differentiation software (Griewank and Walther (2008)) that achieved this
objective either by overlaying operators in object oriented languages such
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as C++ (Griewank et al (1996)), or automatically generates source code for
gradient functions based on source code of the original function, Bischof et al
(1996).
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Allgöwer F (eds) Nonlinear Model Predictive Control: Towards New Challenging
Applications, LNCIS, vol. 384, Berlin/Heidelberg: Springer-Verlag, pp 235–248

Gravdahl JT, Egeland O (1997) Compressor surge control using a close–coupled valve
and backstepping. In: Proc. American Control Conference, Albuquerque, NM.,
vol 2, pp 982 –986

Greitzer EM (1976) Surge and rotating stall in axial flow compressors, part i: Theo-
retical compression system model. J Engineering for Power 98:190–198

Griewank A, Walther A (2008) Evaluating Derivatives, second edition. SIAM
Griewank A, Juedes D, Utke J (1996) ADOL–C, A package for the automatic dif-

ferentiation of algorithms written in C/C++. ACM Trans Mathematical Software
22:131–167

Grimm G, Messina MJ, Tuna SE, Teel AR (2004) Examples when nonlinear model
predictive control is nonrobust. Automatica 40:1729–1738



50 Tor A. Johansen

Haseltine EL, Rawlings JB (2005) Critical evaluation of extended Kalman filtering
and moving–horizon estimation. Ind Eng Chem Res 44:2451–2460

Heemels WPMH, Schutter BD, Bemporad A (2001) Equivalence of hybrid dynamical
models. Automatica 37:1085 – 1091

Hicks GA, Ray WH (1971) Approximation methods for optimal control systems. Can
J Chem Engng 49:522–528

Houska B, Ferreau HJ, Diehl M (2010) ACADO toolkit – an open–source framework
for automatic control and dynamic optimization. Optimal Control Applications
and Methods

Isidori A (1989) Nonlinear Control Systems, 2nd Ed. Springer Verlag, Berlin
Jadbabaie A, Yu J, Hauser J (2001) Unconstrained receding–horizon control of non-

linear systems. IEEE Trans Automatic Control 46:776–783
Jang SS, Joseph B, Mukai H (1986) Comparison of two appraoches to on-linear param-

eter and state estimation of nonlinear systems. Ind Chem Proc Des Dev 25:809–814
Jazwinski AH (1968) Limited memory optimal filtering. IEEE Trans Automatic Con-

trol 13:558–563
Johansen TA (2004) Approximate explicit receding horizon control of constrained

nonlinear systems. Automatica 40:293–300
Kandepu R, Foss B, Imsland L (2008) Applying the unscented Kalman filter for

nonlinear state estimation. J Process Control 18:753–768
Kantas N, Maciejowski JM, Lecchini-Visintini A (2009) Sequential Monte Carlo for

model predictive control. In: Magni L, Raimondo DM, Allgöwer F (eds) Nonlinear
Model Predictive Control: Towards New Challenging Applications, LNCIS, vol.
384, Berlin/Heidelberg: Springer-Verlag, pp 263–274

Keerthi SS, Gilbert EG (1988) Optimal infinite horizon feedback laws for a general
class of constrained discrete–time systems: Stability and moving horizon approxi-
mations. J Optimization Theory and Applications 57:265–293

Kerrigan E, Maciejowski JM (2000) Invariant sets for constrained nonlinear discrete–
time systems with application to feasibility in model predictive control. In: Proc.
IEEE Conf. Decision and Control, Sydney

Keviczky T, Borrelli F, Balas GJ (2006) Decentralized receding horizon control for
large scale dynamically decoupled systems. Automatica 42:2105 – 2115

Kim I, Liebman M, Edgar T (1991) A sequential error-in-variables method for non-
linear dynamic systems. Comp Chem Engr 15:663–670

Kojima M (1980) Strongly stable stationary solutions in nonlinear programs. In:
Robinson SM (ed) Analysis and Computation of Fixed Points, Academic Press,
New York, pp 93–138

Kol̊as S, Foss B, Schei TS (2008) State estimation IS the real challenge in NMPC.
In: Int. Workshop on Assessment and Future Directions of NMPC, Pavia, Italy

Kraft D (1985) On converting optimal control problems into nonlinear programming
problems. In: Schittkowski K (ed) Computational Mathematical Programming, vol
F15, NATO ASI Series, Springer–Verlag, pp 261–280

Krstic M, Kanellakopoulos I, Kokotovic P (1995) Nonlinear and Adaptive Control
Design. Wiley and Sons

Lazar M, Heemels W, Bemporad A, Weiland S (2007) Discrete-time non-smooth
nonlinear mpc: Stability and robustness. In: Findeisen R, Allgöwer F, Biegler LT
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