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Abstract: Explicit piecewise linear (PWL) state feedback solutions to constrained linear
model predictive control (MPC) problems can be obtained by solving multi-parametric
quadratic programs (mp-QP) where the parameters are the components of the state vector.
This allows MPC to be implemented via a PWL function evaluation without real-time opti-
mization. The main drawback of this approach is dramatic increase in off-line computational
complexity and number of regions in the state space partition as the number of states, inputs
and constraints increases. Here we study two approaches to complexity reduction. First, we
consider input trajectory parameterization. Second, we develop a search tree that allows PWL
function evaluation to be implemented in real time with low computational complexity.

1. INTRODUCTION

Recently, several algorithms for computing explicit
solutions to constrained linear model predictive con-
trol (MPC) problems have been reported (Bemporad
et al.1999, Bemporadet al.2000b, Seronet al.2000,
Bemporadet al. 2000a, Tøndelet al. 2001, Johansen
et al. 2000b, Johansenet al. 2000a). Their main mo-
tivation is that an explicit solution avoids the need
for real-time optimization, and may therefore open
new application areas where MPC has not traditionally
been used due to the need for high sampling rates or
software reliability issues.

In (Bemporadet al. 1999, Bemporadet al. 2000b)
it was recognized that the MPC problem is a multi-
parametric quadratic program (mp-QP), when the
state is viewed as a parameter to the problem. They
show that the solution (the control input) is a piece-
wise linear (PWL) function on a polyhedral partition
of the state space and develop an mp-QP algorithm to
compute this function. In (Tøndelet al.2001) a signif-
icantly more efficient mp-QP solver is developed by
inferring additional information about neighboring re-
gions during the iterative solution. Alternative formu-
lations and solutions based on mp-LP as well as exten-
sions to hybrid systems using multi-parametric mixed-
integer LP can be found in (Bemporadet al.2000a).

In (Johansenet al. 2000b, Johansenet al. 2000a)
a different solution approach is taken, starting with
the Hamilton-Jacobi-Bellman equation for the optimal
control problem. The solution strategy allows sub-
optimality and complexity reduction to be introduced
by pre-determining a small number of sampling in-
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stants when the active set is allowed to change on the
horizon. An alternative sub-optimal approach was in-
troduced in (Bemporad and Filippi 2001) where small
slacks are introduced on the optimality conditions and
the mp-QP algorithm (Bemporadet al.1999, Bempo-
radet al. 2000b) is modified for the relaxed problem.
This leads to reduced computational complexity and
reduced complexity of the solution (in terms of less
regions in the partition). Since in MPC we only need
the first sample of the control for implementation,
one may in many cases recognize several neighboring
regions where the solution leads to the same locally
linear control law. Whenever the union of such polyhe-
dra remains polyhedral one may use this to reduce the
number of regions required for implementing the con-
trol law (Bemporadet al.2000b). However, the recog-
nition of such regions is hard (Bemporadet al.2001).

The present paper contains two main contributions;
First we study how one of the standard complexity
reduction methods from conventional MPC can be
applied also in the explicit MPC case, namely the idea
of input trajectory parameterization. Typically this is
implemented by input blocking, i.e. pre-determining
a small number of sampling instants when the control
input is allowed to change. Second, it is studied how to
efficiently evaluate the PWL function that defines the
explicit solution. This is non-trivial since the number
of regions in the partition may be large, see (Borrelliet
al. 2001) for an alternative approach that exploits the
convexity of the cost function. We develop a binary
search tree to be used in the real-time implementation
to determine with low worst-case computational com-
plexity in which polyhedral region an arbitrary state
belongs.



2. LINEAR MPC WITH CONSTRAINTS

The main aspects of formulating a linear MPC prob-
lem as a multi-parametric QP will, for convenience, be
repeated here. See (Bemporadet al.2000b) for further
details. Consider the linear system

x(t + 1) = Ax(t) + Bu(t) (1)

wherex(t) ∈ Rn is the state variable,u(t) ∈ Rm is
the input variable,A ∈ Rn×n, B ∈ Rn×m and(A,B)
is a controllable pair. For the currentx(t), MPC solves
the optimization problem

min
U,{ut,...,ut+M−1}

J(U, x(t)) (2)

such that

ymin ≤ yt+k|t ≤ ymax, k = 1, ..., N

umin ≤ ut+k ≤ umax, k = 0, 1, ..., M − 1, (3)
ut+k = ut+k−1, M ≤ k ≤ N − 1
xt|t = x(t)
xt+k+1|t = Axt+k|t + But+k, k ≥ 0
yt+k|t = Cxt+k|t, k ≥ 0

The cost function is given by

J(U, x(t)) =
N−1∑

k=0

xT
t+k|tQxt+k|t + uT

t+kRut+k

+ xT
t+N |tPxt+N |t (4)

with symmetricR > 0, Q ≥ 0, P > 0. The final cost
matrixP is usually calculated from the algebraic Ric-
cati equation with the assumption that no constraints
are active fork ≥ N . This and related problems can
by some algebraic manipulation be reformulated as

Vz(x(t)) = min
z

1
2
zT Hz (5)

subject to Gz ≤ W + Sx(t) (6)

wherez , U+H−1FT x(t), U =
[
uT

t , ..., uT
t+N−1

]T
.

The vectorx(t) is the current state, which can be
treated as a vector of parameters. Note thatH > 0
sinceR > 0. The number of inequalities is denotedq
and the number of free variables isnz = m ·N . Then
z ∈ Rnz , H ∈ Rnz×nz , G ∈ Rq×nz , W ∈ Rq×1,
S ∈ Rq×n. The solution of the optimization prob-
lem (5)-(6) can be found in an explicit formz∗ =
z∗ (x(t)). Bemporadet al. (1999) showed that the
solutionz∗(x(t)) (andU∗(x(t))) is a continuous PWL
function ofx(t) defined over a polyhedral partition of
the parameter space, andVz(x(t)) is a convex (and
therefore continuous) piecewise quadratic function.

3. MULTI-PARAMETRIC QUADRATIC
PROGRAMMING

As shown in (Bemporadet al. 1999, Bemporadet al.
2000b), the mp-QP problem (5)-(6) can be solved by
applying the Karush-Kuhn-Tucker (KKT) conditions

Hz + GT λ = 0, λ ∈ Rq (7)

λi

(
Giz −W i − Six

)
= 0, i = 1, ..., q (8)

λ ≥ 0 (9)
Gz −W − Sx ≤ 0 (10)

For ease of notation we writex instead ofx(t). Super-
script i on some matrix denotes theith row. SinceH
has full rank, (7) gives

z = −H−1GT λ (11)

Let z∗(x) be the optimal solution to (5)-(6) for a given
x. Let λ̆ be the Lagrange multipliers of the inactive
constraints,̆λ = 0, and λ̃ the Lagrange multipliers
of the active constraints,̃λ ≥ 0. Assume for the
moment that we know which constraints are active at
the optimum for a givenx. We can now form matrices
G̃, W̃ andS̃ which contains the rowsGi, W i andSi

corresponding to the active constraints.

Assume that̃G has full row rank, such that the rows of
G̃ are linearly independent. For the active constraints,
(8) and (11) gives−G̃H−1G̃T λ̃−W̃−S̃x = 0, which
leads to

λ̃ = −(G̃H−1G̃T )−1(W̃ + S̃x). (12)

Eq. (12) can now be substituted into (11) to obtain

z = H−1G̃T (G̃H−1G̃T )−1(W̃ + S̃x). (13)

We have now characterized the solution to (5)-(6) for
a given optimal active set, and a fixedx. However, as
long as the active set remains optimal in a neighbor-
hood ofx, the solution (13) remains optimal, whenz
is viewed as a function ofx. Next, we characterize the
region where this active set remains optimal. First,z
must remain feasible (10)

GH−1G̃T (G̃H−1G̃T )−1(W̃+S̃x) ≤ W+Sx. (14)

Second, the Lagrange multipliersλ must remain non-
negative (9)

−(G̃H−1G̃T )−1(W̃ + S̃x) ≥ 0. (15)

The equations (14) and (15) describe a polyhedron in
the state space. This region is denoted as thecritical
region CR0 corresponding to the given set of active
constraints which Bemporadet al.(1999) showed that
when you pick an arbitraryx0 ∈ X and let(z0, λ0)
be the corresponding values satisfying the KKT con-
ditions, then one can find the critical regionCR0 from
(14) and (15). This region is a convex polyhedral set
and represents the largest set of parametersx such that
the combination of active constraints at the minimizer
remains optimal (Bemporadet al.1999).

Algorithms have been developed by (Bemporadet al.
2000b, Johansenet al. 2000b, Tøndelet al. 2001) for
constructing polyhedral partitions of the state space
that explicitly defines the PWL function̂z∗(x). Below,
we give a simplified description of the algorithm,
while a complete description and analysis that also
covers degeneracy and infeasibility is found in (Tøndel
et al.2001):

Algorithm 1 (mp-QP)

1. Initialize the list of unexplored active setsU with an
arbitrary active set. Initialize the list of explored active
setsE to be empty.

2. Choose an arbitrary active set inU , compute the
associated linear state feedback (13), Lagrange multi-
plier (12) and polyhedral region defined by (14) and
(15).

3. Remove the active set under consideration fromU
and add it toE .
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Fig. 1. Polyhedral partition of state space,N = 4.
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Fig. 2. Polyhedral partition of state space,N = 10.

4. For each facet of the corresponding polyhedral rep-
resentation determine the active set in the neighboring
region and determine the active set in the neighboring
region. For each active set that is unexplored (i.e. not
already inE), add it toU .

5. If U is non-empty, go to 2, otherwise terminate.
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Example.Consider the double integrator (Johansenet
al. 2000b)

A =
[ 1 Ts

0 1

]
, B =

[
T 2

s
Ts

]

where the sampling intervalTs = 0.05, and consider
the MPC problem with cost matricesQ = diag(1, 0),
R = 1, and the matrixP given as the solution of
the algebraic Riccati equation. The constraints in the
system are−0.5 ≤ x2 ≤ 0.5, −1 ≤ u ≤ 1. Figures
1-2 show the partitions for horizonsN = 4 and
N = 10, and Table 1 summarizes the complexity and
computation times of the exact solutions forN = 1 to
N = 15.

As figures 1-2 show, most of the regions in the parti-
tion are very small. This is unfortunate when consider-
ing the on-line processing time required to determine
in which polyhedral critical region an arbitrary statex
belongs.
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Table 1. Number of regions and computa-
tion times (800 MHz CPU) for exact solu-

tions.

N Regions CPU time(s)
1 5 0.1
2 13 0.2
3 23 0.3
4 35 0.6
5 51 1.0
6 71 1.6
7 95 2.5
8 123 3.7
9 155 5.3
10 191 7.3
11 231 9.7
12 277 13.0
13 325 17.3
14 379 21.7
15 437 27.0

4. INPUT TRAJECTORY PARAMETERIZATION

The input trajectory is defined by thenz elements
of the vectorU . The input is allowed to change its
value at every sampling instant. The main idea of input
trajectory parameterization is to introduce a class of
input trajectories with less degrees of freedom in order
to reduce the dimensions of the optimization problem
and thereby reducing the computational complexity.
This is implemented in some form in most practical
MPC algorithms. With a discrete-time formulation the
most common approach is to pre-determine a number
of sampling instants when the control input is not
allowed to change, i.e.

U = T Û (16)

wheredim Û < dim U . For example, ifN = 5,m =
1 and we require that the input is kept constant for the
first two samples and also for the three last samples,
we haveÛ = (û1, û2)T and

T =
( 1 1 1 0 0

0 0 1 1 1

)T

Hence, the five-sample trajectory is parameterized by
2 parameters. Due to the receding horizon implemen-
tation of MPC, the implemented control input can
change every sample and the degree of sub-optimality
can usually be kept fairly small, especially for open-
loop stable plants. It is also experienced that such
an input trajectory parameterization may be beneficial
from a robustness point of view, i.e. the closed loop
performance is less sensitive to modelling error.

In the explicit MPC formulation, the parameterization
(16) leads to the free variablêz = Û + TT H−1FT x,
also of reduced dimension. The approach can be im-
plemented with only trivial modification of the data in-
put and output to the mp-QP solver. Hence, the explicit
solution remain PWL and continuous as a function of
the state.

Example, continued.The partition of the double inte-
grator is now computed using parameterization of the
input, with 1, 2, 3 and 4 parameters and horizon 15.
The partitions are shown in Figure 3. Table 2 shows
the errors in the control input, whereemax is the max-
imal error in the control input compared to the exact
solution, andeav is the average error in the control
input. We can see that it is important to choose the
number of parameters large enough to get an accept-
able result. Table 3 shows the corresponding errors for
exact solutions with horizons 1-4. Parameterization of
the input withN parameters has reduced the complex-



ity while introduced a small degree of sub-optimality,
as expected.

Table 2. Errors using input blocking with 1-
4 parameters, compared to exact solution.

Parameter CPU time(s) Regionsemax eav

1 0.1 7 0.87 0.2481
2 0.3 17 0.30 0.0108
3 0.4 25 0.18 0.0056
4 0.7 41 0.09 0.0024

Table 3. Errors in exact solutions with hori-
zons 1-4, compared to exact solution with

horizon 15.

N emax eav

1 0.57 0.0215
2 0.41 0.0121
3 0.31 0.0084
4 0.23 0.0071
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5. REAL-TIME SEARCH TREE

The real-time implementation of explicit MPC corre-
sponds to evaluating the pre-computed PWL mapping
from x to u. This amounts to first determining in
which critical region where the current statex be-
longs, and then computing the control input using the
pre-computed affine state feedback. The main problem
is to minimize the number of linear inequalities to
evaluate in order to determine which critical region
x belongs. An efficient way to exploit the convexity
of polyhedral sets is to build off-line a binary search
tree (for on-line use) where at each level one linear
inequality is evaluated. More precisely, consider the
set of polyhedral critical regionsX1, X2, ..., XN that
form a partition of the polyhedronX ⊂ Rn. Let all
hyper-planes defining the polyhedra in the partition
be denotedaT

j x = bj for j = 1, 2, ..., L. Define
dj(x) = aT

j x − bj and represent the polyhedronXi

through its index setIi such that

Xi = {x | dj(x) ≤ 0 for all j ∈ Ii} (17)

The idea is to construct a balanced binary search tree
such that for a givenx ∈ X, at each node we will
evaluate one affine functiondj(x) and test its sign.
Based on the sign we select the left or right sub-tree.
Traversing the tree from the root to a leaf node one will
pass through nodes corresponding to all indices inIi
for somei, and one may terminate the search with the
index i of the polyhedronXi wherex belongs. The
main challenge is to design a tree of minimum depth
such that we minimize the number of extra nodes (with
inequalities not needed in the representation ofXi)
we have to pass through to determine the solution.
The following algorithm will construct such a binary
search-tree:

Algorithm 2 (Build search tree)

1. The root node of the tree is initialized asN1 :=
(∗, I), where the first element (∗ means uninitialized)
is the index of the splitting hyperplane, and the second
element is the index set of all the critical regions.

2. The set of unexplored nodes is initialized asU :=
{N1}.
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Fig. 3. Polyhedral partition of state space with horizon
15, using 1, 2, 3 and 4 parameters (from top to
bottom).

3. Select any unexplored nodeNk ∈ U . If no such
node exist, the algorithm terminates. Otherwise, re-
move the node fromU and go to step 4.

4. Select a hyperplaneaT
j x = bj from the set of linear

inequalities that define all the polyhedra of all critical
regionsXi, i ∈ Ik and letNk := (j, Ik).



5. LetY ⊂ X denote the polyhedral set defined by the
inequalities of all nodes encountered when traversing
the tree from the root nodeN1 to the nodeNk. Let
Y +

k := Y ∩ {x ∈ X|dj(x) > 0} andY −
k := Y ∩

{x ∈ X|dj(x) ≤ 0}. Let I+ = ∅ andI− = ∅.
6. For alli ∈ Ik, addi toI+ if Xi∩Y +

k is non-empty,
and addi to I− if Xi ∩ Y −

k is non-empty.

7. If |I+|/|Ik| ≥ α or |I−|/|Ik| ≥ α, where0.5 <
α < 1 is some constant, go to step 4.

8. Create two new nodesN+ = (∗, I+) andN− =
(∗, I−). Make these nodes the child nodes ofNk

corresponding to positive and negativedj(x), respec-
tively.

9. If |I+| 6= 1, addN+ to U .

10. If |I−| 6= 1, addN− to U .

11. Go to step 3.
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The number of nodes and depth of the tree are strongly
dependent on which hyperplanes a selected in step
4, and the value of the parameterα in step 7. In
the examples below we have selected hyper-planes
randomly withα = 0.75, but there will obviously
exist better heuristics. If no hyperplane exist such
that the loop between steps 4 and 7 terminates,α is
increased.

The notation|I| means the number solutions inI
having the same firstr elements. Due to steps 9 and
10 we allow the leaf nodes of the search tree to define
a set of regions (rather than a unique region) where
the first r elements of therN -dimensional solution
vector are the same. This is sufficient in MPC where
we only need to implement the first sample of the
control input trajectory. The computationally most
complex operation in Algorithm 2 is in step 6 where
the emptiness of some polyhedral sets are tested by
solving LPs.

Example, continued.

Consider the PWL solution for the double integrator,
see also Table 1. In Table 4 the results using Algorithm
2 are shown. In general, the worst-case number of
arithmetic operations required to search the tree and
evaluate the PWL function is(2n+1) ·(D+r), where
D is the depth of the tree,r is the number of inputs
and n is the number of states. At each node there
aren multiplications,n additions and 1 comparison.
Moreover,(2n + 1)r operations are required to evalu-
ate the affine state feedback in the region. We observe
from Table 4 that the computational complexity seems
to increase asO(log N), whereN is the number of
critical regions. We note that although the computa-
tional complexity increases slowly with the number of
critical regions, the memory requirement for storing
the PWL function parameters and the nodes increases
rapidly. Due to randomness in step 4 of the algorithm,
the search tree will be different at each execution,
typically causing the numbers in Table 4 to vary by
less than 15 % .
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Table 4. Characteristics of the search trees
constructed for the double integrator.

N Regions Nodes Depth Arithmetic ops.
1 5 13 4 25
2 13 29 5 30
3 23 63 6 35
4 35 97 7 40
5 51 117 8 45
6 71 173 9 50
7 95 241 9 50
8 123 397 10 55
9 155 421 10 55
10 191 493 11 60
11 231 661 11 60
12 277 775 11 60
13 325 901 12 65
14 379 1087 12 65
15 437 1195 12 65

6. SIMULATION EXAMPLE

A laboratory model helicopter (Quanser 3-DOF Heli-
copter) is sampled withT = 0.01s, and the following
state-space representation is obtained

A =




1 0 0.01 0 0 0
0 1 0 0.01 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0.01 0 0 0 1 0
0 0.01 0 0 0 1




B =




0 0
0.0001 −0.0001
0.0019 0.0019
0.0132 −0.0132

0 0
0 0




The states of the system are

x1 - elevation
x2 - pitch angle
x3 - elevation rate
x4 - pitch angle rate
x5 - integral of elevation error
x6 - integral of pitch angle error

The inputs to the system are

u1 - front rotor power
u2 - rear rotor power

The system is to be regulated to the origin with the
following constraints on the inputs and pitch and el-
evation rates−1 ≤ u1 ≤ 3, −1 ≤ u2 ≤ 3,
−0.44 ≤ x3 ≤ 0.44, and−0.6 ≤ x4 ≤ 0.6. The
LQ cost function is given by

Q = diag(100, 100, 10, 10, 400, 200)
R = I2×2

andP is given by the algebraic Riccati equation. The
following four cases are considered:

(1) N = 1, no input parameterization.
(2) N = 50, input parameterization, 1 parameter.
(3) N = 3, no input parameterization.
(4) N = 50, input parameterization, 3 parameters.

The MPC controller was computed using the mp-QP
Algorithm of (Tøndelet al. 2001) and the following
table shows the number of regions and computation
times in each case.

Figures 4-6 show results of simulations starting in
x(0) = (0.5, 0.5, 0, 0, 0, 0)T . From the accumulated



Table 5. Number of regions and computa-
tion times for helicopter example.

Case Regions CPU time (s)
1 33 2
2 49 3
3 2528 703
4 3464 1585
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cost in Figure 7 one can see that the controllers using
a horizon of 50 and parameterization of the input
definitely outperforms the controllers with horizons of
1 and3.
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Fig. 7. Accumulated LQ cost.

7. CONCLUSION

It is shown empirically that the use of input trajec-
tory parameterization is a useful method for reducing
the computational complexity of explicit MPC based
on multi-parametric quadratic programming. An al-
gorithm for efficient real-time evaluation of the PWL
explicit solution is also provided.
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