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Abstract

Optimal feedback solutions to the infinite horizon LQR problem with state and
input constraints based on receding horizon real-time quadratic programming are
well known. In this paper we develop an explicit solution to the same problem,
eliminating the need for real-time optimization. It is shown that the resulting feed-
back controller is piecewise linear. This explicit functional structure is exploited for
efficient real-time implementation. A suboptimal strategy, based on a suboptimal
choice of a finite horizon and imposing additional limitations on the allowed switch-
ing between active constraint sets on the horizon, is suggested in order to address
the computer memory and processing capacity requirements of the explicit solution.
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1 Introduction

Consider the linear time-invariant system

z(t +1)= Az(t) + Bu(t) (1)

where z € R", and v € R". The optimal constrained LQ feedback controller
minimizes the infinite horizon quadratic cost
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J(u(t),u(t+1),u(t +2),...;2(t) = ilQR(x(T), u(T)) (2)
lor(v,u)=2"Qx + u" Ru (3)

subject to the linear constraints

Gz(r+1)<g (4)
Hu(r)<h (5)

for all 7 > ¢, where R > 0, QQ > 0, G € R?*™, and H € RP*". It is assumed
that ¢ > 0 and h > 0 (where the inequalities are elementwise since g and h are
vectors) to ensure that the origin is an interior point in the admissible region.
The optimal cost function is defined as

V(z(t))= min  J(u(t),u(t +1),u(t+2),...;2(t)) (6)
u(t),u(t+1),...

where the minimization is subject to the dynamics of the system (1), and the

constraints (4)-(5) are imposed at every time instant 7 € {t,t + 1,t + 2,...}

on the trajectory. The cost of moving from the state x(¢) to the origin in an

optimal manner is given by V' (z(t)). Consider the following Hamilton-Jacobi-
Bellman (HJB) equation

0= min (V(x(t+N)) —Vi(xz(t)) + Z_j; lQR(x(T),u(T))>

u(T)ERT,Gz(r+1)<g,Hu(r)<h
(7)

re{t,t+1,t4+2,.. i+ N—1}

where N > 1 is some horizon, and V' (0) = 0. This equation characterizes the
optimal cost function and optimal control action for the problem when N is
so large that there are no active or violated constraints beyond this horizon,
since the unconstrained LQ solution is optimal beyond the horizon, (Sznaier
and Damborg 1987, Chmielewski and Manousiouthakis 1996, Scokaert and
Rawlings 1998). Under the assumptions of feasibility, non-explicit optimal
solutions to the HJB (7) can be computed using real-time quadratic pro-
gramming, where a finite-dimensional optimization problem is achieved since
V(z(t+ N)) = 2T (t + N)Pz(t + N), where P is the solution to the algebraic
Riccati equation associated with the unconstrained LQR. This is an optimal
approach, in contrast to common suboptimal (approximate) approaches used
in model predictive control with a finite horizon cost function approximation
or a finite input move horizon, e.g. (Keerthi and Gilbert 1988, Rawlings and
Muske 1993). In any case, the real-time quadratic programming imposes severe
limitations on the achievable sample rate that may discourage the application
of this approach in many cases.



Recently, Bemporad et al. (2000) (see also (Bemporad et al. 1999) for further
details) derived an optimal explicit solution to the constrained LQR prob-
lem, in the sense that no real-time quadratic program needs to be solved. The
explicit controller was computed offline using multi-parametric quadratic pro-
gramming. The constrained LQR problem is viewed as a quadratic program
parameterized by the state x, and the multi-parametric quadratic program-
ming approach essentially finds an explicit solution for all z within an arbitrary
subset of the state space. The resulting optimal controller was proved to be
a continuous piecewise linear function defined on a polyhedral partitioning
of the state-space. Related characterizations of the piecewise linear nature of
constrained LQ control are derived for some cases in (Seron et al. 2000).

In this paper we also seek an explicit solution to this problem in order to
reduce the demand for real-time computations. However, in order to address
the restrictions imposed by real-time applications on both computer memory
and processing capacity, a (possibly) suboptimal strategy is developed. Hence,
we introduce a mechanism to trade performance for computational advantages.
The present approach can be seen as an extension of (Bemporad et al. 1999)
(although the main parts were developed independently, see also (Johansen et
al. 20000)), with the following main differences:

e Here we consider a suboptimal strategy where an approximation to the
optimal cost function is utilized and we impose restrictions on the allowed
switching between the active constraint sets during the prediction horizon.
As a limiting case, the presented approach is equivalent to the optimal
explicit LQR of Bemporad et al. (1999).

e Due to the sub-optimality of the controller, its performance is not known a
priori, so one may rely on computational analysis tools which can be used
to compute upper and lower bounds on suboptimal performance as well as
assess stability (Johansson and Rantzer 1998, Rantzer and Johansson 2000).

e The solution strategies are different; the present approach is not based on
multi-parametric quadratic programming. Both strategies leads to a piece-
wise linear (PWL) controller. While the exact approach leads to a contin-
uous PWL function on a polyhedral partitioning, the suboptimal approach
will not do so in all cases.

e The present approach explicitly addresses the possibility of infeasibility in
the design by minimizing the constraint violation, while in the approach of
Bemporad et al. (1999) a method based on slack variables is used (Zheng
and Morari 1995).

e The present design approach includes practical modifications to avoid high
gain feedback (which may result in sliding mode like behavior and chattering
control) at the boundary of the state constraints due to the choice of a short
horizon.

In (Chisci 1999), the structure of the finite-dimensional real-time quadratic



program is utilized to developed a fast QP algorithm based on active sets for
constrained LQR. In an alternative approach, (Sznaier and Damborg 1990), a
finite discrete search problem is achieved by quantization of the set of admissi-
ble inputs. The computational complexity of their search problem is typically
much larger, and a different type of approximation is introduced due to the
quantization of the inputs. The approach of (Wredenhagen and Belanger 1994)
defines a nested set of elliptic regions of the state space, each containing the
origin, where different L.Q) optimal feedback laws are designed with different
(Q matrices. The idea is to reduce the gain of the feedback in order to avoid
saturation when far away from the origin. However, only input constraints are
considered.

This paper is organized as follows: In section 2 it is shown that the HJB
equation can be decomposed into two nested parts by considering the finite
number of combinations of active constraint sets. It is shown in section 3
that the solution of the innermost part of the HJB equation is an affine state
feedback, when the active constraint set is given. The outer part of the HJB
equation, addressed in section 4, is to determine which constraints should be
active at any current state x(t). Some aspects of sub-optimality, computational
complexity and real-time implementation are discussed in section 5.

2 Controller decomposition

The main idea is to introduce active constraint set sequences as a formalism to
decompose the HJB equation. This decomposition is discussed in this section.

2.1 Active constraint set sequences

A single inequality constraint d?z > e; is said to be an active constraint if
diTz = e;, where d; is a vector, e; is a scalar and the vector z is the design
variable. Let D" = (dy, do, ..., d,,) and e” = (e, ey, ..., €,). An active constraint
set associated with some set of inequality constraints Dz < e is the set of
indices to those constraints that are active. The active constraint set may be
empty, meaning that no constraints are active. At each sample one may impose
a number of equality constraints (selected from the inequality constraints (4)
and (5)) on the states and inputs that, except for degenerate cases, is less than
or equal to the number of inputs r. This selection of constraints is the active
constraint set associated with that sample. A sequence of active constraint sets
imposed at each sample on the horizon finite IV is called an active constraint
set sequence.



A naive solution strategy to the optimal explicit LQR problem is simply to
evaluate all feasible active constraint set sequences on a sufficiently large hori-
zon N. This naive solution strategy to the optimal explicit LQR will indeed
have offline computational disadvantages compared to the multi-parametric
quadratic programming approach of (Bemporad et al. 1999) since the num-
ber of candidate active constraint set sequences increases very rapidly with
the horizon N and the number of inputs r and states n. However, it has the
advantage that it can be easily modified to determine suboptimal explicit
LQR solutions with drastically reduced offline and real-time computational
demands. The main idea in the present work is to use a smaller horizon N
than optimal, and in addition to reduce the flexibility in the active constraint
set sequence by allowing changes in the active constraint set to be made only
at a limited number of predetermined samples.

Suppose the set of indices « is associated with the active input constraints in
(5) at some sample, and the set of indices 3 is associated with the active state
constraints (4) at the same sample. Then (o, ) is an active constraint set.
Next, suppose we define allowed switching times as follows: 0 = Ny < Ny <
-+ < Ng < N. For example, if S =3, Ny =0, N, = 3 and N3 = 7 there will
be 3 subintervals {¢,t+1,t+2}, {t+3,t+4,t+5,t+6}, and {t+7,t+8,t+9}
with associated fixed active constraint sets (a1, 1), (az, f2), (as, B3), respec-
tively. In general, these active constraint sets lead to an active constraint set
sequence ((aq, B1), (v, B2), ..., (ang, Bng)) that together with (Ny, N, ..., Ng)
and N define the active constraint set imposed at each sample on the hori-
zon. This means that the constraints indexed by each active constraint set
are imposed on the associated interval, leading to the following set of equality
constraints:

Halu(t) = hq,
Hyu(t+1) = hq,

Hoyu(t+N—1)=h

aNS /

and

Gﬁl (AZC(t) + ONElﬁ(t)) =95 W
G, (A% (t) + CyEriilt)) = gg,

GﬁNs (ANZL‘(t) + CNENa(t)) = 98w,

We have introduced the matrix C; = (A""'B|A"2?B|---|B), the rN x rN-



matrix E, defined by

- 0 O
B = (10)
IT‘TXT‘T 0

and applied the well known formula z(t + 7) = A7x(t) + CyE,i(t) where
a(t) = (u(t), v (t+1), ---, u"(t+ N —1))". Removing from (8) and (9)
equations that are a priori known to be infeasible and duplicated equations,
(8) and (9) may be stacked into the following set of equations

Lyi(t) = Myx(t) + Mg + M!'h (11)

where k is an index in the index set C = {0, 1,2, ..., Ny — 1} enumerating the
finite set of all active constraint set sequences generated by the constraints (5),
(4) and the division into subintervals. For later use, let ks € C be the index to
the active constraint set sequence with no active constraints, and define the
r x rN matrix E; = (0pxpy -y Orsery Lrsery Opscry --.0psr) Where the Iy, is at the
7-th r x r block.

2.2 Decomposition of the HIB equation

In this section we consider the minimization problem on the RHS of (7) with
the stated constraints, which is a strictly convex problem whose solution is
characterized by the Karush-Kuhn-Tucker conditions. However, since these
conditions involve inequalities, the Karush-Kuhn-Tucker conditions provide
an implicit solution that does not lead to an explicit state-feedback imple-
mentation of the controller. This motivates a simple decomposition of the
minimization in (7) into two nested parts where one part only involves equal-
ity constraints and the other part is a discrete optimization problem over all
allowed active constraint set sequences. The part that involves equality con-
straints can then be solved explicitly offline, while the discrete optimization
problem can also be solved offline or reduced to a simpler problem and then
solved in real-time in a efficient manner. The following result is then evident
from (Chmielewski and Manousiouthakis 1996):

Theorem 1 (Nested HJIB equation) Assume the minimum in the HIB equa-
tion (7) exists. With N sufficiently large and no restrictions on the active
constraint set sequences allowed switching times (S = N ), the HIB equation
(7) is equivalent to



0 =min min V(z(t+ N)) — )+ Z lor(z(t + 1) Er+1a(t))>

keC a(t)eRTN
Lyu=Myz(t)+M] g+ MPh

where the outer minimization s subject to the constraints

HE, @ (z(t)) < h (13)

G(ATz(t) + CyE i (z(t))) < (14)

for all 1 <7 < N and aj(x(t)) is the 4(t) solving the innermost optimization
problem in (12). O

Determining the optimal cost function V' is in general a difficult problem, so
similar to (Bemporad et al. 1999, Rantzer and Johansson 2000) we utilize a
lower bound V' as a suboptimal approximation in the control design. Any loss
of performance resulting from this approximation as well as sub-optimality
due to restrictions on the allowed active constraint set switching times may
be analyzed using the tools given in (Johansson and Rantzer 1998, Rantzer
and Johansson 2000).

Lemma 1 A lower bound on the optimal cost function is given by V(x) =
2T Px < V(z) where the matriz P = PT is the positive definite solution of the
algebraic Riccati equation corresponding to the unconstrained LQR problem:

A"PA-P—-A"PB(B"PB+R)"'B"PA+ Q=0 (15)

Proof. The result follows immediately from the observation that constraining
the input will never decrease the value of the optimal cost function (Sznaier
and Damborg 1990). O

Note that V(z) = V(z) for z in any compact set if N is sufficiently large
(Chmielewski and Manousiouthakis 1996). For a given active constraint set
sequence (with index k € C) this leads to the problem

ug(x(t)) = arg nin L(a(t), =(t)) (16)
Lya(t)=Mpx(t)+M] g+M}h

where

|<

I(a(t), x(t)) = V(x(t + N)) — +ZlQR (t+7), Erau(t) (17)



and the outer finite discrete optimization problem of (12) is restated as

K" (x) = arg min o () (18)

wi() = L(uy(z), x) (19)

where the minimization is subject to

HE, u;(x)

h (20)
G(A"z + OyE:iij () < g

<
<

foralll1 <7t < N.

Note that the minimum £*(x) need not be unique. In this case k*(x) is selected
according to some pre-ordering of the candidate minima. The optimization
problem (18)-(21) is feasible if and only if z € X where

= U Xy (22)

keC
X{={r € R" | HEi(x) < h, G(Aw+ CyEliiy(x)) < g, for 1 <7 < N}
(23)

For x € X", the suboptimal constrained LQR is given by u*(v) = E1 ., (7).
If v ¢ XT, we relax the problem by allowing minimum violation of some of the
constraints according to some priority. Constraints that may be relaxed are
called ”soft” constraints (with indices in the constraint sets ay,p and Sgor1),
as opposed to "hard” constraints (with indices in the constraint sets a4, and
Bhara), which can not be relaxed under any circumstances. Hence, for z ¢ XT',
we minimize the criterion

N
= Zl w{ﬂsoft maX(()’ Gﬁsoft (AT:U + CNET{[’]:(:U)) - gﬁsoft)
N
+ Z wg:asoft maX(O H softE ( ) - hasoft) (24)
T=1

with respect to k € C subject to "hard” constraints for 1 <7 < N

G/Bha,rd (AT"I; + CNET,&]: (‘T)) S gﬁhard (25)
Haha,rdETﬂ;; (1‘) S h Qhard (26)

The constant positive vectors wi 4,,,, and wa g, ,, are weights that capture some
prioritization among the soft constraints. The optimization problem (24)-(26)



is feasible when € X%, where

Xt= X (27)
keC
Xf={z € R"— X" | such that (25) — (26) holds} (28)

If 2 ¢ XF U XE, ie. no active constraint set sequence in C gives a control
input that is feasible with respect to the hard (non-relaxable) constraints on
the horizon, the controller fails. Let the solution to (24)-(26) be denoted k*(x)
and the associated control input @j., (). Furthermore, let X = X" U X"
and define for x € X the control input of the suboptimal constrained LQR:

' (2) = Byitg o)1) (29)

The resulting PWL control structure may be summarized as follows. There is
a number of affine feedbacks where each affine feedback is designed with the
objective of minimizing the LQ cost function subject to the state and input
trajectories moving on a specific active constraint set sequence. The affine
state feedbacks are designed offline by solving (16) as described in section 3,
so the real-time computations amount to selecting which affine state feedback
to apply at a given state z(¢). This amounts to solving (18)-(21) (or (24)-(26)
in case of infeasibility), which is addressed in section 4. Together, this provides
a sub-optimal solution to the HJB equation.

3 Computing gain matrices

In this section we first present the solution to the optimization problem (16),
for a fixed active constraint set sequence. Next, we present an example and
introduce some modifications. The expression (17) for I can be formulated as
follows:

L(i,z) =2" S 2 + 227 Soti + " Ssi (30)
where
Si=Q+ATQA+ (A)TQA* + ...+ (AN HTQAN 4 (AMYTPAN <(R)

Sy =ATQCNE, + ... + (AN HTQCNEN_, + (AN)TPCy (32)
Ss=R+ETCLQCNE, + ...+ EL_ CLQCyEN_, + CLPCy (33)

w
[\

and the block diagonal 7N x r N-matrix R is defined by R = diag (R, R, ..., R).



Theorem 2 (Gain matrices) Consider a fized active constraint set sequence
with index k € C. For any v € X, the solution to the constrained quadratic
optimization problem (16) is given by the affine state feedback

Ky s, if k=kF
= " . 1)
K g+ Ki h+ Kiox, if k# ko

where Ko = —S7'ST for k = ko, and for k # ko

-1

Ki =S LE (kS5 ' L) M}
-1

Ky =S5 Ly (LS5 LY) M

-1 -1
Kpo=—5;" ((1 — L7 (148, ') Lk531> ST - LT (1,5, 'L Mk>

Proof. Note that (16) is strictly convex since R > 0, and it suffices to consider
only first order optimality conditions, which is straightforward (Johansen et
al. 2000q). O

Observe that in the case of no active constraints, then (34) takes the form
of the well known unconstrained LQR solution, namely u(z) = —(BT(Q +
P)B + R) 'BT(Q + P)Ax. The affine state feedback (34) is parameterized
such that individual constraints can be deactivated and the constraint limits
may be changed on-line without changing the gain matrices.

Example 1: Double integrator with input and state constraints

Consider a double integrator with the discretized model

17T, T2
A= ,B= (35)
01 T,

using a sampling-interval Ty = 0.05. The control objective is defined by the
cost function lgr(z,u) = 23 + u? and the constraints —0.5 < 2o < 0.5 and
—1 < u < 1. Figure 1 shows a simulation when the initial state is z(0) =
(—2,0)". Observe that initially the input constraint v = 1 is active. After
t ~ 0.5, the state constraint zo, < 0.5 is active, until ¢ ~ 2.85 when the
controller switches strategy once more, since it appears to be no longer optimal
to stay on the constraint xo = 0.5. After this point the unconstrained LQ
controller is used and the state is controlled to the origin. The switching
strategy chosen by the controller is intuitive if x; is interpreted as position,
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T as speed and u as acceleration: In order to reduce the position error the
speed is first increased at a maximum rate (given by the input constraint).
When the maximum speed allowed is reached, this speed is kept until the
position error becomes so small that the speed must be reduced to stabilize the
position at the setpoint. In this example we have chosen the smallest possible
horizon, namely N = S = 1 since this is advantageous for computational
reasons. The region of feasibility is seen to be X' = {z € R? | || < 0.55}
since the input constraints restricts s to be changed by at most 0.05 units
within one sample. Hence, the admissible region |z5| < 0.5 can be reached in
one sample from X*. In order to efficiently handle cases when |z5| > 0.55,
we define the input constraints as hard (non-relaxable) constraints, and the
state constraints as soft (relaxable) constraints. Furthermore, we define all
the elements of the weight vector w; s, ., to be equal to one. Since the hard
constraints are associated with the input only, X = R2. The piecewise linear
feedback control law is shown in Figure 2. O

Effectively, the active state constraints x5 = +0.5 are enforced by a sliding-
mode like strategy in the example above. This is mainly due to the choice
of a very small N, and will lead to poor robustness (Johansen et al. 2000a).
However, the problem can be resolved by modifying the state constraints (9)
such that they do not require the active state constraints to be fulfilled in a
dead-beat manner (at the first possible sample), but rather attract the state
asymptotically towards the active constraints. This is achieved by replacing
every instant of the active state constraint equation Ggx(t + 7) = gs by its
asymptotic version

Dg,Ggx(t +7) + ...+ Dgrx(t + 1) + Dp oGpr(t) =g (36)

where Djg ; are diagonal matrices defined by pole placement such that Gzz(t) —
gs at a desired rate. In order take full advantage of this modification, it is con-
venient to introduce another modification, namely an e-boundary layer near
each active state constraint, similar to what is common in sliding mode control
(Slotine 1984). Within this boundary layer, the controller is only allowed to
switch to feedbacks that either makes the associated state constraints asymp-
totically active, or makes the state move away from the state constraint in the
direction of the admissible region of the state space. Formally, this is achieved
by adding the following constraint to the optimization problem (18)-(21)

Gpto) (ATa(t) + O By (2(1))) < Glggay (1), if i, C Bla(t)  (37)

for 1 <7 < N. The symbol §(z) denotes the set of currently e-active state
constraints at x, i.e. f(z) = {l € {1,2,...,q¢} | (G11, ..., Gpn)x—gi| < &}, where
g; > 0 defines the boundary layer. Eq. (37) excludes non-attractive feedbacks
that tend to move the state towards violation of active state constraints.

11



Double integrator example, cont’d

In order to reduce the gain near the active state constraints, a boundary
layer of £; = g9 = +0.15 is defined around the constraints zo = 0.5 and
r9 = —0.5. Hence, when 0.65 > x5 > 0.35, the control strategy is allowed to
switch and the controller takes the objective of attracting the state towards
the surface zo = 0.5 while minimizing the LQ objective. The speed of the
motion towards the surface z5 = 0.5 is defined by D; = 1/0.9 and D, = 1.
Comparing the piecewise linear controller surface of the modified controller
(right part of Figure 2) with the original controller (left part of Figure 2), it
is seen that the gain has indeed been reduced in an e-boundary layer near the
active constraints xo = +0.5. O

4 State space partitioning

The purpose of this section is to discuss how to solve the outer optimization
problem (18)-(21), and in particular to derive an algorithm for computing a
state space partitioning that can be used to decide which active constraint
set sequence is optimal at a given state. The discrete minimizations in (18)
and (24) can either be avoided completely in the real-time computations if
the set of candidate optima is reduced to single elements within subsets of the
state space, or at least reduced to a small subset of C within subsets of the
state space. This can be exploited in the real-time implementation to reduce
the processing capacity and memory requirements and also for computational
analysis as considered in section 5.

4.1 Activity region

The activity region Xj C X is defined as the subset of the state space where
the active constraint set sequence with index k is active, i.e.
Xe={x e X | k=k"(x)} (38)

Together with the affine functions (34), the activity regions Xy, k € C com-
pletely describes the PWL structure of the controller.

Double integrator example, activity regions
For the double integrator example, there are five constituent affine feedbacks

with corresponding activity regions. Region/Feedback 0: unconstrained case

12



(k = 0), Region/Feedback 1: input constraint u = —1 active (k = 1), Re-
gion/Feedback 2: input constraint u = 1 active (k = 2), Region/Feedback 3:
state constraint x5 = —0.5 active (k = 3), Region/Feedback 4: state constraint
xe = 0.5 active (k = 4). The activity regions for the suboptimal constrained
LQ controller with boundary layer are shown in Figure 3. We observe that in
this case the regions can be characterized as unions of polyhedra. O

In order to explicitly characterize the activity regions, it is natural to treat the
feasible and relaxed feasible regions X and X% separately, since the choice
of optimal active constraint set sequence is based on different criteria in these
cases. Thus, we define the activity regions contained in X as follows:

X/ ={x e X[ | k is optimal w.r.t. (18) — (21) and (37)} (39)

For z € X%, the controller objective changes to minimize the constraint vio-
lation and we define

Xp={x € X['| kis optimal w.r.t. (24) — (26) } (40)

Hence, the activity region X where the feedback with index k is active is now
X;, = X/ U X]. A slightly more explicit characterization of X/ than (39) is

X} ={r e X{ | p(z) < ¢j(x), forall je F(x)n Al)} (41)

where F(z) C C is a set containing the active constraint set sequences that
are feasible at x

Fa)={kecC|(zx) € X[} (42)

and A(z) C C is a set containing the indices to the active constraint set
sequences that are attractive or not currently active at x, cf. (37):

A(e) = {k € C | Gy (ATa + On By (2) < Gy or By ¢ Bla)} (43)

Furthermore, it follows that

xf=Ux{ = Uxf¥ (44)
kec kec
Likewise, a slightly more explicit characterization of X than (40) is given by

Xp={z e X} | vi(x) < w;(2), for all j € R(z)} (45)

13



where R(z) C C is defined as the set of active constraint set sequences that
are feasible with respect to the non-relaxable constraints, but not feasible with
respect to the relaxable constraints, at x:

R(z)={keC|ze X[} (46)

and we also have

Xt=xp = UXF (47)
keC keC

which is the set of states where there exists an active constraint set sequence
that is feasible and optimal with respect to the non-relaxable constraints but
not with respect to the relaxable constraints.

4.2 Outer Approximations to the Activity Regions

Since X/}" and X[ are polyhedral, it is clear that X*', X and X = X" U X
are unions of polyhedra. However, because the optimality conditions in (41)
are characterized by quadratic functions, the set X; C X may not be char-
acterized only by the hyper-planes defined by feasibility, but possibly also by
other hyper-planes or (convex or non-convex) quadratic surfaces due to the
optimality conditions. Thus, X, may in general not be a union of polyhe-
dra and therefore difficult to characterize exactly in a more explicit manner
than (41) and (45). Still, several explicit outer approximations of X}, can be
computed in terms of sets that contain X. Here we develop an outer approx-
imation X; D X, where X is a union of polyhedra. As the basic polyhedral
building blocks in this characterization we consider the hyperplane partition
PHP = (X" || € {1,2,..., Np}} generated by all the hyper-planes involved
in the characterization of X}, X* and X, for k € C:

HE.Ky,x=h— HE.(K},g+ K} h) (48)
G(A™ + OyE, Ky2)z =g — GCnE (K] ,9+ K] | h) (49)
G(A” + CNE Ky — I)t =GONE (K] h + KY .9) (50)

for 1 <7 < N, with obvious interpretation when h or g are zero-dimensional.
Let (48)-(50) be written in compact notation Yz = y. The set of half-spaces
Vi={reR"|Yix>y}and Y, ={z € R" | Yiz < y;} now defines the hy-
perplane partition PZ¥ of X as the set of all possible non-empty intersections
of half-spaces: XF = Yf N ...N Y4, where * symbolizes any combinations
of +/—. Note that this hyperplane partition will contain unnecessarily many

14



elements in many cases and is introduced here in order to develop a theoretical
understanding.

Lemma 2 The hyperplane partition PHE has the following properties:

(1) Each constituent region of the partition is uniquely associated with either
the feasible region X or the relazed feasible region X2, i.e. X' NXT =
0 and XHP N XE = XHP | or vice versa XHAT N XT = XHP and X1 N
XEB =0, foralll =1,2,...., Np.

(2) Foralll € {1,2,...,N,} and v € XHT the sets F(x), R(x), A(z) and 3(x)
are invariant in the sense that each of them contain the same elements
for all z € X17.

Proof. Follows from the fact that the hyperplane partition P¥F of X is gen-
erated by all hyper-planes involved in the characterizations of F(x), R(z),
A(z) and §(z). O

From the first part of Lemma 2 it is evident that each X" € PIF is fully
contained in either X or X¥'. Thus, we define disjoint index sets

ch={ie {12, Np} | X" 0 X" +0} (51)
ch={le{1,2,..Np} | X" 0 X" £ 0} (52)

Assume [ € L i.e. P ¢ XF. One may now define a set F/ € C of feasible
active constraint set sequences in the region X":

Fl={kecC| X" nXx[ +0} (53)

Hence, for any 2 € X" there exists a unique I(z) € £" such that z € X, and

at least one of the feasible active constraint set sequences in F} is optimal for
all x € X"P. We continue by characterizing the subset of .7-'lf that is optimal

for some 2 € X/, aiming towards a definition of X > X.

Lemma 3 Let | € LF and j,k € ]:lf be arbitrary. Suppose the active con-

straint set sequences (o, 5%, (0, 58), - (aly: B,)) and ((od: B1), (0 B3, s (s B,))
are different. If af C az and ¥ C Bij, for all i = 1,2, ..., Ng, then the active

constraint set sequence with index j is suboptimal for all x € XML .

Proof. Because the active constraint set sequence with index £ is a subset of
the active constraint set sequence with index j and both are feasible, it follows
immediately that ¢ (z) < ¢;(x) for all z € XF since adding a constraint to
some constraint set sequence will not reduce the cost. O

15



Lemma 4 Letl € LF and k € .7:lf be arbitrary, and define

Yik = max (pi(r) — () (54)
kg = min (pp(@) = @;(@)) (55)

l

If yir, <0 forallj ]:lf, then the active constraint set sequence with index k is
optimal for all x € XFP. If k. > 0 for all j € .7:lf, then the active constraint
set sequence with index k is suboptimal for all v € XHT,

Proof. Since v;; < 0 it follows that for all z € X"” and j € F/, pp(z) <
©;(z). Note that due to Lemma 2, F/ = F(x) for all z € X/F, and the first
part follows because ]—"lf contains all feasible active constraint set sequences in
C. The second part of the lemma is analogous. O

Both (54) and (55) are quadratic programs, for a fixed [ € £ and fixed active
constraint set sequences k,j € Fj, since X" is polyhedral and o), and ¢;
are quadratic. Using the optimality characterizations in Lemmas 3 and 4, one
will typically be able to exclude a large set of candidate active constraint set
sequences from the set of feasible active constraint set sequences .7-'lf in the
region X/P. We define O] C F}" as the indices of those active constraint set
sequences that are consistent with the optimality conditions in Lemmas 3 and

4 in XHP:
ol = {k € F/ | k is optimal w.r.t. (18)-(21), (37) for some z € )C}HP}56)
We define the outer approximation to the activity region X ,f as follows:

Xi=U X" (57)

leckr

Next, assume [ € L ie. XM C X One may now define a set F/ C C of
relaxed feasible active constraint set sequences in the region X7

Fi={kec| X" nxl+0} (58)
Unlike the characterization of X ,f , we now have the following result:

Lemma 5 For all k € C, the set X| is a union of polyhedra.

Proof. Let k € C be arbitrary. The region of relaxed feasibility X[ is polyhe-
dral, cf. (28). Since the function vy (z) — vj(x) is piecewise linear in z, the sets
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{z € R" | vg(x) < v;(z)} that appear in the optimality condition in (45) are
characterized using hyper-planes. Since all geometric objects characterizing
Xj, are hyper-planes, it is a union of polyhedral sets. O

According to Lemma 5 it is possible to obtain an exact and explicit character-
ization of X;. However, for computational reasons it may be convenient with
an outer approximation 72 D X in some cases. The following optimality
lemma is useful in that respect:

Lemma 6 Let | € L® and k € F[ be arbitrary, and define

i = max ((x) — v4(v)) (59)
= min,, (@) — vy (0) (60)

If pjr, <0 forall j € FJ, then the active constraint set sequence with index k is
optimal for all x € XHP. If o5 > 0 for all j € F[, then the active constraint
set sequence with index k is suboptimal for all z € X1T.

Proof. Analogous to Lemma 4. O

Note that (59) and (60) are piecewise linear programs. Using the optimality
characterizations in Lemma 6, one will typically be able to exclude a large
set of candidate active constraint set sequences from the set of feasible active
constraint set sequences F; in the region XF. We define Of C FF as the
indices of those active constraint set sequences that are consistent with the
optimality conditions in Lemma 6 in X"

O = {k € F/ | k is optimal w.r.t. (24)-(26) for some z € )C}HP} (61)

Finally, we define the outer approximation to the activity region X; as follows:

X.= U & (62)
leck

We are now in position to define X = Yi U X, and

F, lecLr

Fi= (63)
Fr, leLk
o, lecF

O, = (64)
oy, lecL”
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4.8 Partitioning Algorithm

The above sets can in principle be computed directly by first determining the
hyperplane partition P and then using Lemmas 3-6 to compute the can-
didate optimal affine feedbacks within each region of the partition. However,
this procedure may be too computationally intensive for large problems, and
an alternative algorithm is required.

Algorithm 1 (Partitioning algorithm)

(1) Let £:=0, and U := {X}.

(2) If U = (0, the partition generated by this algorithm is P = £ and the
algorithm terminates.

(3) Let Xy € U be arbitrary.

(4) Let Oy contain the candidate optimal active constraint set sequences in
Xy, computed according to Lemmas 3-6.

(5) If Oy contains a sufficiently small number of elements, add A} to the set
of explored subsets £ and remove X| from the set of unexplored subsets
U. Go to step 2.

(6) Select a hyperplane Y;x = y; from Yz = y and split Xj into non-empty
X" = XNY;"and X; = AyNY; . If this is not possible for any hyperplane
from Yz =y, add X, to the set of explored subsets £ and remove X} from
the set of unexplored subsets Y. Go to step 2.

(7) Add X" and &, to U and remove X, from U. Go to step 2.

O

The set £ contains the set of explored subsets of X, while the set U/ contains
the set of explored subsets of X. The algorithm will explore the candidate op-
timal active constraint sets associated with each element of £ sequentially. The
regions of X will be split using the hyper-planes from Yz = y and explored
individually until either a sufficiently small number of candidate optimal ac-
tive constraint set remains in each region, or the region can not be split any
further using hyper-planes from Y = y. The following theorem summarizes
the properties of the result of Algorithm 1.

Theorem 3 (Partitioning) Algorithm 1 terminates with a partition Px and
sets Oy, Xy that satisfies k*(x) € Oy, for all x € X, and Xy, C X, and Xy, is
a union of polyhedra. O

In order to reduce the computational complexity of Algorithm 1 one should
implement heuristics in step 6 in order to select a ” promising” hyperplane for
splitting the region A} such that unnecessary splitting is avoided. Note that
the partition Px generated by Algorithm 1 may be unnecessarily fine since at
each step it is not known a priori if one can reduce the number of elements in
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Oy by further partitioning of &j. Hence, after the algorithm terminates, the
number of constituent polyhedra in the partition of X can often be reduced
considerably by aggregating pairs of neighboring polyhedra whenever their
union remains polyhedral, see also (Bemporad et al. 2001).

Double integrator example, cont’d

The partition computed using Algorithm 1 with a successive aggregation of
neighboring regions is shown in Figure 4. We observe that the number of
regions is 11, which is the smallest possible number of polyhedral regions
capable of characterizing the activity sets for this problem. Also, we observe
that within each region, there is a single candidate optimal active constraint
set sequence. Hence, the PWL feedback law is explicitly characterized by this
partition. Feedback 0 (unconstrained case) is associated with R1, R3 and R4 in
this partition. Feedback 1 (u = —1) is associated with R5 and R11. Feedback
2 (u=1) is associated with R7 and R10. Feedback 3 (z2 = —0.5) is associated
with R2 and R6, while feedback 4 (z, = 0.5) is associated with R8 and R9. O

So far the partitioning has been restricted to utilize only the hyper-planes
derived from the linear feasibility (and attraction) constraints. Consequently,
there need not always be a single candidate optimal constraint set sequence
within each region of the partition. Indeed, if the remaining number of can-
didate optima in O, is unacceptably large for some region X; € Py, one still
has the option to proceed by partitioning the polyhedral region A further,
either utilizing the (possibly non-linear) surfaces derived from the optimality
conditions or some approximating hyper-planes. An exception is in the case
of the optimal constrained LQR (Bemporad et al. 1999). When there are no
restrictions on the allowed switching between active constraint set sequences
on the horizon, the exact partition is a union of polyhedra.

5 Optimality, complexity and real-time implementation
5.1 Upper and lower bounds on cost function

Define the closed loop performance of the suboptimal constrained LQR as
follows:

V(x(0)= i (a7 ()Qx(t) + (u* (1)) Ru* (t)) (65)

t=0

For example 1, upper and lower bound on cost V(z(0)) are illustrated in Figure
5. These bounds are computed by solving LMIs with a continuous piecewise
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quadratic parameterization of the functions as described in (Johansson and
Rantzer 1998, Rantzer and Johansson 2000), see (Johansen et al. 2000a) for
details. Note that a continuous-time approximation is utilized due to restric-
tions in the available software implementation (Hedlund and Johansson 1999),
and that the bounds have no direct meaning for ¢ X', except that the upper
bound defines a Lyapunov function (under a detectability assumption).

5.2 Complezity reduction by sub-optimality

It was claimed initially that we expect that the restrictions introduced on
the allowed active constraint set sequence switching times will reduce the
computational complexity of the controller, i.e. lead to a partition of the state
space with less regions. We illustrate this by an example.

Example 2, Double integrator (Bemporad et al. 1999)

Consider the double integrator

with sampling-interval Ty = 0.05. The control objective is defined by the cost
function lgr(z,u) = 22 + 0.1u* and the constraints —1 < u < 1. We consider
two cases

(1) N = 8, with no restrictions on the number of active constraint set
switches on the horizon, same as (Bemporad et al. 1999).

(2) N =8, S=2, Ny =23, i.e. only one active constraint set switch allowed
on the horizon

The second case leads to the following nine candidate active constraint set
sequences that enumerates the set C:
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First 3 samples Last 5 samples

u= Kz u= Kz
u=Kzx u=—1
u= Kz u=1
u=—1 u= Kz
u=—1 u=—1
u=—1 u=1
u=1 u= Kz
u=1 u=—1
u=1 u=1

The suboptimal strategy gives a reduction from 93 to 33 regions, cf. Figure 6,
which allows a significant reduction of the real-time processing and memory
requirements. From Figure 7 we observe that the differences in the closed loop
trajectories for z(0) = (—3,3)T are not very significant. O

5.3  Real-time Implementation

The suboptimal constrained LQR is a PWL function of the state. However,
efficient evaluation of this PWL function in the real-time control system re-
quires that one is able to efficiently compute in real time which affine feedback
to associate with each vector x. The affine state feedbacks are computed offline
and stored in real-time computer memory. Whether it is desirable to also com-
pute offline an explicit characterization of the subsets of X where each affine
feedback is active depends on several factors: Acceptable offline processing
time, available real-time computer memory and real-time computer process-
ing capacity. There exist at least two real-time implementation strategies that
can be employed in order to address the above mentioned tradeoffs:

(1) The discrete optimization problems (18)-(21) and (24)-(26) are solved in
real time. Discrete search techniques such as branch-and-bound and A*
can be applied for this purpose (Korf 1990).

(2) A partitioning of X such that within each constituent region of the parti-
tion there are at most a given small number of affine feedbacks that may
be optimal. A search among the small number of remaining candidates
(if more than one) is then carried out in real time.
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Example 2, continued

By early termination of the partitioning algorithm one can achieve for example
the partitions shown in Figure 6. In the first case there are 9 regions, each with
a list of up to 3 affine feedbacks that are optimal at various states within each
region, see Table 1. In the second case there are 3 regions, with a list of up to 5
affine feedbacks that are optimal at various states in each region, see also Table
1. Hence, one can reduce the complexity of the partition by comparing the
values of a user-specified number of quadratic functions and linear constraints
in real time. Obviously, this gives the user additional flexibility for the real-
time implementation. In a sense, one has a method for partially solving the
real-time quadratic program offline. O

Example 3, laboratory model helicopter

A laboratory model helicopter (Quanser 3-DOF Helicopter) with two DC-
motor driven rotors is sampled with 7" = 0.01s, and the following state-space
representation is obtained

1 0 001 0 00 0 0
0 1 0 00100 0.0001 —0.0001
0 0 1 0 00 0.0019 0.0019
A — R B =
0 0 0 1 00 0.0132 —0.0132
000 0 0 0 10 0 0
0 001 0 0 01 0 0

The states of the system are x; - elevation, x5 - pitch angle, x3 - elevation
rate, x4 - pitch angle rate, x5 - integral of elevation error, and x¢ - integral of
pitch angle error. The inputs are u; and us, the front and rear rotor voltages.
Assume the system is to be regulated to some setpoint with the following
constraints on the inputs, pitch and elevation rates —1 < u; < 3, =1 < uy < 3,
—0.25 < 23 < 0.25, and —0.6 < 24 < 0.6. The LQ cost function is given by
@ = diag(100, 20,40, 8,1,0.5) and R = diag(1,1). With N =1 this leads to 33
active constraint sets. Comparing their quadratic cost function and evaluating
the linear constraints requires in the worst 320 microseconds on a 450 MHz
Pentium II with our implementation. If necessary, this can be reduced by state
space partitioning using Algorithm 1. The experimental results in Figure 8
compares the performance along the elevation axis with unconstrained LQR.
(I

Another experimental case study utilizing this approach in an automotive
application is reported in (Petersen et al. 2001).
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Due to the exponential growth of the number of candidate active constraint
set sequences as the number of states, horizon and constraints increases, the
approach is restricted to problems of low and moderate complexity. As the
problem complexity increases, the use of prior knowledge and simulation are
the keys to restricting the number of candidate active constraint set sequences
and the (offline and online) computational complexity.

6 Conclusions

A suboptimal strategy for explicit offline design of L.QQ controllers subject to
state and input constraints is derived. It is demonstrated that allowing sub-
optimality in terms of restrictions on the number of allowed active constraint
set, changes on the horizon leads to significant reduction in the complexity of
the state space partitioning. The method gives the user flexibility to address
the tradeoff between real-time computer memory and processing capacity. The
approach provides a practical framework for design, analysis and efficient real-
time implementation of LQ controllers that are explicitly designed to satisfy
constraints on the states and inputs.
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Fig. 1. Constrained control of a double integrator from initial state 2(0) = (=2, 0)7.
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Fig. 2. PWL constrained LQ feedback controller for the double integrator (left)
and with boundary layer around active state constraints (right).
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Activity sets

Feedback 4

Fig. 3. Activity regions for the five constituent affine feedbacks in the constrained
LQR for the double integrator with boundary layers.

Partition of state space

Fig. 4. Partition for the constrained LQR for the double integrator with boundary
layers.
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Upper and lower bounds on cost
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Fig. 5. Upper and lower bounds on the cost for the constrained LQR for the double
integrator with boundary layers.

Partition of state space Partition of state space

Fig. 6. Double integrator with input constraints and N = 8. Left: Simple partition
where the maximum number of candidate state feedbacks in each region is 3. Right:
Simple partition where the maximum number of candidate state feedbacks in each

region is 5.

27



Fig. 7. Example of trajectories with and

without active constraint set change
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Fig. 8. Experimental results with 3-DOF laboratory model helicopter.
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Region | Candidate optimal feedbacks
9 regions R1 {1}
R2 {3,6,9}
R3 {2,5,8}
R4 {7,8,9}
R5 {9}
R6 {2,8,9}
R7 {4,5,6}
R8 {3,5,6}
R9 {5}
3 regions R1 {1,4,5,7,9}
R2 {3,5,6,9}
R3 {2,5,8,9}

Table 1
List of candidate optimal feedbacks for the simplified partitions of example 2.
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