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Abstract
Solving electrical impedance tomography (EIT) inverse problems in real-time is a
challenging task due to their dimension, the nonlinearities involved and the fact that
they are ill-posed. Thus, efficient algorithms are required to address the application
of tomographic technologies in process industry. In practical applications the EIT
inverse problem is often linearized for fast and robust reconstruction. The aim of
this paper is to analyse the solution of linearized EIT inverse problem from the
perspective of a state estimation problem, providing links between regularization,
observability and convergence of the algorithms. In addition, also a new way to
define the fictitious outputs is proposed, leading to observers with fewer parameters
than with the approach widely used in literature. Simulation of EIT examples
illustrate the main ideas and algorithmic improvements of the proposed approaches.

Keywords: State estimation, inverse problems, electrical impedance
tomography

1. Introduction

The real-time solution of inverse problems, such as in electrical impedance tomography
(EIT), is very important in many practical industrial applications. In EIT the aim is to estimate
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a set of unknown variables representing some characteristic of the material (conductivity or
resistivity) in a region of interest, given a set of measurements at the boundary (voltages).
This problem is ill-posed and some regularization methods are normally used to solve
it [23, 32].

In static imaging case it is possible to use a full set of independent current patterns and
the corresponding voltages for each image and Newton–Raphson type methods provide good
performance in terms of convergence rate and residual error [35]. However, in real-time
applications the static techniques often do not provide satisfactory results due to the fast
changes in the unknown variables. The information on their temporal evolution is lost or
severely affected.

In the time-varying case, the reconstruction approach to solve the inverse problem can be
formulated as a state estimation problem and the time-varying variables have been estimated,
for example, with the aid of the Kalman filter [31] or extended Kalman filter (EKF)
[17, 18, 28]. The use of unscented Kalman filters have also been proposed to deal with the
non-linear characteristics of the problem [10, 15]. In order to deal with the computational
complexity, reduced-order representations for the state variable have been proposed [33] . The
estimation of region boundaries has also been carried out by Kalman filters [16, 19], extended
Kalman filters [30] and unscented Kalman filters [11, 15]. The automated segmentation of
EIT images by means of the Kalman filter has been proposed by [36].

Due to the the ill-posedness of the problem the image reconstruction procedure has to be
regularized. One common option is to augment the output by adding fictitious outputs as
suggested in [14]. This approach has been very successful in tackling many problems, but as
far as we know there are no works addressing the system theoretical properties of this
particular choice.

The need of having efficient and robust algorithms that can meet the requirement for real-
time implementations; i.e. guaranteed performance, small number of mathematical operations
and boundeness of all variables, leads us to consider the applications of deterministic
observers, which are computationally simpler than recursive stochastic filters.

A state observer provides estimates of the internal state of a given system, from mea-
surements of its input and output variables. The theory of state estimation is a well established
field for both linear [20] and nonlinear dynamical systems [3]. The design of the observers
based on the minimization of a cost function considering noise characteristics lead to
recursive estimation algorithms; i.e. Kalman filters [4, 13]. Recent extensions of this
approach, as described for instance in [27], deal with nonlinear systems and robustness issues.

Thus the main objective of this work is to analyze from an observer perspective the
solution of the inverse problem, linking the algorithms with system’s theoretical properties
such as observability and convergence.

To focus the work on the properties of the algorithms and their relationship with the
structure of the inverse problem only deterministic linear problems are addressed. However,
the results can also be extended to the analysis of uncertain linear and non-linear models.

This paper is organized as follows: section 2 describes the EIT inverse problem to be
addressed in this work. Section 3 provides a brief summary of known results concerning
system properties required to have a well posed estimation problem and also observer design
methods. In section 4, analysis of regularization strategies in the context of the observer
design is carried out. Section 5 provides EIT examples to illustrate the main issues addressed
in this paper. Finally in section 6 some conclusions and future work are addressed.
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2. EIT inverse problem

The EIT model considers an object Ω ∈ R2 with a given a resistivity distribution ρ. The
electrical currents ij are injected into the object Ω through electrodes having a surface ej
located on the boundary Ω∂ . The induced electrical potential u and the voltages vj can be
uniquely determined by solving the following partial differential equations representing the
complete electrode model:

 ρ Ω=−( )u 0 in (1)1

ρ+ ∂
∂

= = …−u z
u

r
v e j lon , 1, 2, , (2)j j j

1

∫ ρ ∂
∂

= = …− u

r
s i j ld 1, 2, , (3)

e
j

1

j

Ω∂
∂

= ∂ ⧹ ⋃
=

u

r
e0 on (4)

j

l

j
1

where r is the outward unit normal, zj is the effective contact impedance between the jth
electrode and the surface and l is the total number of electrodes. In addition, the following two
conditions taking into account the conservation of electrical charge and the selection of the
ground electrode, respectively, are needed

∑ =
=

i 0 (5)
j

l

j

1

∑ =
=

v 0 (6)
j

l

j

1

The numerical solution of this model can be obtained using the finite element method
(FEM). The potential at each node are calculated by the following linear matrix equation
representing the finite element discretization of equations (1)–(6)

ρ =G U I( ) (7)e c

where ρ ∈ + − × + −G R( ) n l n l( 1) ( 1) is a sparse block matrix, α β= ∈ + −U R[ , ]e
T n l 1, with α and β

being vectors with the coefficient associated with the FEM model for the potentials and
referenced voltages, ∈ + −I Rc

n l 1 is a vector depending of the injected currents and n is the
number of FEM nodes. The computed voltages for a given current pattern m; i.e. Im, can be
obtained by solving (7) for the potential on the electrodes guaranteeing equation (6) as
follows

β ρ= =  V R I( ) (8)m
T

m

where =V v v[ ,...., ]m m l m
T

1, , , =I i i[ ,...., ]m m l m
T

1, , is a vector of injected currents,

ρ ∈ − × −R R( ) l l( 1) ( 1) is a block + ⩽ ⩽ + −−G n j k n l( ) , 1 , 1jk
1 of the inverse matrix

ρ −G ( ) 1 and ∈ × − Rl l( 1) is a sparse matrix [32]. Thus for M current patterns
= … ∈V V V R[ , ]M T

M
T T Ml

1 .
The evolution of ρ t( ) is described by a discrete-time model (state-equation)

ρ ρ ω+ = + +t A t Bu t t( 1) ( ) ( ) ( ) (9)
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where ∈u t R( ) m is a vector of known external signals, ω ∈t R( ) n is a random variable
representing the state noise, ∈ ×B Rn m the input matrix and ∈ ×A Rn n is the state transition
matrix. The deterministic external signals, u(t), drive the dynamic of the resistivity fields.
They may represent, for instance, point sources that can be manipulated in order to control
some features of the resistivity field as described in [22, 24–26].

A linearized observation model (8) can be obtained by expanding VM around ρ0 and
taking the first terms of the Taylor expansion

ρ ρ
ρ

ρ ρ δ ρ ρ− = ∂
∂

− +ρV V
V

( )
( )

( ) ( , ), (10)M M
M

0 0 00

where δ ρ ρ( , )0 represents the higher order terms associated to the Taylor expansion, and

δ ρ ρ
ρ ρ

ρ ρ
∥ ∥
∥ − ∥

→ ∥ − ∥ →
( , )

0, as 0. (11)0

0
0

Let us assume a neighborhood of ρ0 such so that δ ρ ρ ≈( , ) 00 and the first term provides

a reasonable approximation. By defining ρ=x , ρ ρ= − + ρ
ρ ρ

∂
∂y V V ( )M M V

0
( )

0

M

0
and

= ρ
ρ ρ

∂
∂C V ( )M

0
, equations (9) and (10) can be written as

ω
ν

+ = + + =
= +

x t Ax t Bu t t x x

y t Cx t t

( 1) ( ) ( ) ( ), with (0) unknown
( ) ( ) ( ) (12)

0

where ∈y t R( ) Ml, ν ∈t R( ) l represents the measurement noise, and ∈ ×C RMl n. Both state
and measurement noises are assumed to have zero mean Gaussian distributions.

3. Observability, design and convergence: preliminaries

In order to estimate the resistivity given the measured voltages, the model (12) must satisfy
certain system properties which will be summarized in this section.

3.1. System properties

Definition : Observability [2]. The invariant discrete linear system (12) is observable if x (0)
can be determined exactly from the zero input response ⩾y t t{ ( ), 1}.

The zero input response is characterized by setting the inputs to the system to zero:

+ = =
=

x t Ax t x x

y t Cx t

( 1) ( ), with (0) unknown
( ) ( ) (13)

0

Thus, the observability of system (12) is determined by the pair (A, C).

Theorem. The pair (A, C) is observable if and only if the observability matrix  has rank
equal to n, where

= ⋯ − C A C A C (14)T T T n T T1⎡⎣ ⎤⎦

This result can be obtained by using the system equations to express the value of x (0) in
terms of n past values of y(t) and u(t). If the Observability matrix has full row rank, then x (0)
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can be obtained by inverting . However, if the system is not observable, then x (0) can not
be estimated no matter the number of measurements taken.

Definition : Reachability [2]. The invariant discrete linear system (12) is reachable if, for
every state x(t), there is an input sequence ⩾u t t{ ( ), 1} that drives the system from x (0) to a
state x(t).

The reachability of system (12) is determined by the pair (A, B).

Theorem. The pair (A, B) is reachable if and only if the reachability matrix  has rank
equal to n, where

= ⋯ − B AB A B (15)n 1⎡⎣ ⎤⎦

The proof of this result is based on successive substitutions of the system equations to
express x(n) in terms of an initial state and the control inputs up to time −n 1. If the system is
uncontrollable, then there will be no inputs that can drive all the states to a desired position,
either to zero state or to a trajectory.

These two structural properties play an important role in the design of estimation
algorithms. If a system is not observable, then it will be impossible to design an algorithm
with a prescribed dynamic to estimate the full state of the system.

3.2. Observers

The classical observer structure for estimating x(t) of system (12) can be described by

+ = + + −
=

( )x t Ax t Bu t K y y t

y t Cx t

ˆ ( 1) ˆ ( ) ( ) ˆ ( )

ˆ ( ) ˆ ( ) (16)

where ∈ ×K Rn Ml is the observer gain [2]. Since the structure of the observer is defined, the
observer design problem is reduced to find a gain K so that certain specifications in terms of
stability, robustness and performance are satisfied.

The error dynamic depends on the eigenvalues of +A KC , and the design of the
observer gain can be carried out by several methods: Pole placement, Lyapunov design, or
optimization methods [5].

Optimal observer design considers the following cost function

∑∞ = ∥ − ∥ + ∥ + − − ∥
=

∞

− −I y k Cx k x k Ax k Bu k( )
1

2
( ) ˆ ( ) ˆ ( 1) ˆ ( ) ( ) (17)

k
N Q

0

2 2
1 1

where N and Q are symmetric positive definite matrices. The minimization of (17) with
respect to x kˆ ( ) subject to (12) is given by the following equations

+ = + + −( )x t Ax t Bu t K y t Cx tˆ ( 1) ˆ ( ) ( ) ( ) ˆ ( ) (18)

= − +
−( )K CPC N CPA (19)T T1

− + − + =
−( )APA P Q APC CPC N CPA 0 (20)T T T T1
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The positive definite matrix P can be obtained by solving equation (20). This equation
represents an algebraic Ricatti equation which can be solved, for instance, by using the
MATLAB control system toolbox function dare. Additional numerical tools are described in
[7] and [6].

3.3. Kalman filter

In addition, it is also possible to solve the problem based on all the measurements taken up to
time t. The estimates are obtained by minimizing the cost function (21) subject to the
observation and evolution models (12) [29]

∑= ∥ − ∥ + ∥ − ∥ +

∥ + − − ∥

=
− −

−

I t x x y k Cx k

x k Ax k Bu k

( )
1

2
(0) ˆ (0) ( ) ˆ ( )

ˆ ( 1) ˆ ( ) ( ) (21)

M
k

t

N

Q

2

0

2

2

1 1

1

⎡
⎣
⎢⎢

⎤⎦
where −M 1, −N 1 and −Q 1 are positive definite and symmetric matrices. The solution to the
minimization problem can be written in terms of a set of recursive equations known as
deterministic Kalman filter.

= − + −
= + −

−

− −( )
x t Ax t Bu t

x t x t K t y t Cx t

ˆ ( ) ˆ ( 1) ( 1)

ˆ ( ) ˆ ( ) ( ) ( ) ˆ ( ) (22)

= − + =

= +

= −

−

− − −

−
( )

P t AP t A Q P M

K t P t C CP t C N

P t I K t C P t

( ) ( 1) , (0)

( ) ( ) ( )

( ) ( ( ) ) ( ) (23)

T

T T 1

Remark. In the stochastic setting M, N, and Q represent the matrix inverses of the prior
covariance matrices associated to the initial conditions, state and output noise respectively.

Notice that the recursive equation for P(t) does not depend on the measurements, it only
depends on A, C and the weighting matrices M, N, and Q .

3.4. Convergence

Firstly the convergence of the observer is addressed. The observer error dynamic is given by

+ = +e t A KC e t( 1) ( ) ( ) (24)

where = −e t x t x t( ) ( ) ˆ ( ). If the module of all eigenvalues of +A KC are less than one, then
the error will asymptotically converge to zero; i.e. =→∞e tlim ( ) 0t . Observability plays a
fundamental role in the design of the observer gain K as stated in the following theorem.

Theorem. [5] If the system (12) is observable it is always possible to find a matrix
∈ ×K Rn Ml such that the the module of the eigenvalues of +A KC will be less than one.

For optimal design; i.e. an observer gain defined by (19) and (20), it is possible to state
the following result:
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Theorem. [34] If there exists a positive definite and symmetric matrix P so that it is a
solution of (20) and the observer gain is given by (19), then the error dynamic will be
asymptotically stable.

The proof considers the following positive definite function =V e e Pe( ) T . If P is a
solution of (20) and the observer gain is given by (19), then
Δ = − − < − + + − + −V t V t V t e t Qe t e t e t R e t e t( ) ( ) ( 1) ( ) ( ) ( ( 1) ( )) ( ( 1) ( ))T T . Thus,

=→∞V tlim ( ) 0t and therefore =→∞e tlim ( ) 0t .
The conditions for the convergence of the Kalman filter gain K(t) and the time variant P

(t) matrix, defined by the recursive equation (23), are summarized in the following theorem

Theorem. [34] Let =Q ZZT . Suppose that (A,Z) is reachable and (A, C) is observable, then

→ → → ∞P t P K t K t( ) , ( ) , as (25)

these limiting equations are the only solutions of equations (20) and (19).

Detailed analysis of convergence issues can be found in [12] and [1]. If the pair given by
A and Z is not reachable, this means that some elements of the error vector will not be affected
by the filter corrective actions, and therefore the observations will not be able to reduce the
estimation errors. In practice, Q must be always chosen as a full rank matrix in order to avoid
the lack of reachability.

Remark. If the approximation error is not negligible; i.e. the states are far away from the
linearizing point x0, then the observer error will be bounded, but the error dynamic will not
converge to zero. Let us consider a perturbed system given by

δ+ = + + ( )e t A KC e t K x t x( 1) ( ) ( ) ( ), (26)0

where x0 is the linearizing point and δ x t x( ( ), )0 the higher order terms of the Taylor
expansion. If the approximation term is bounded; i.e. δ Δ∥ ∥ ⩽x t x( ( ), )0 , the error can be
bounded by

∑ δ∥ ∥ < ∥ + ∥ + ∥ + ∥
=

− ( )e t A KC e A KC K x j x( ) ( ) (0) ( ) ( ), . (27)t

j

t
t k

0

0

A final bound αe; i.e. α∥ ∥ =→∞ e tlim ( )t e can be estimated as follows

α
λ

Δ<
−

∥ ∥K
1

1
(28)e

max

where λmax is the largest eigenvalue of +A KC.

4. Regularized observer

In certain EIT applications a simple random-walk model can be used to estimate the resistivity
field. In this case the state space model is defined as

ω
ν

+ = +
= +

x t x t t
y t Cx t t

( 1) ( ) ( )
( ) ( ) ( ) (29)

where =x x(0) 0 is unknown. Since A = I the observability matrix depends only on C; i.e.
= C[ ]. Thus the inverse problem described by only the error associated to the observation
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equation (29) is ill-posed, since the observability matrix is rank deficient since in practice
>n Ml. In order to make the system observable it is possible to modify the observation

model by either transforming the output or adding further p measurements. In this case, the
number of extra outputs must be such that the observability matrix  must have rank n; i.e. a
necessary condition is ⩽ +n Ml p.

4.1. Observability and convergence

There are two options to define the augmented output. The first option, proposed in [14],
considers augmenting the output by some fictitious output

= =y
R y

S Lx
C

R C

S L
˜

¯
, ˜ (30)1 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where x̄ is some a priori target value for x , ∈ ×L Rn n is a regularization operator, R and S are
positive definite and symmetric weighting matrices. This definition is motivated by the
regularized solution given by the following functional

= ∥ − ∥ + ∥ − ∥ = −F x y Cx L x x
R y

S Lx

R C

S L
x( ) ( ¯ )

¯
(31)R S

2 2

2⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The observability matrix is then an +Ml n by n matrix = R C

S L

⎡
⎣⎢

⎤
⎦⎥.

Remark. Additional observability measures, such as the ones based on Gramians [2] or in
singular value decomposition of the information matrix [8], can be used not only to test if a
given regularization strategy will provide the required conditions for the existence of a given
K, and therefore the convergence of the observer, but also to analyze the observability of both
the system and its subspaces under different regularization strategies.

The observer has the following structure

+ = + −( )x t x t K y t C x tˆ ( 1) ˆ ( ) ˜ ( ) ˜ ˆ ( ) (32)1
1 1

where ∈ × +K Rn Ml n1 is the observer gain. The estimation error is defined by
= −e k x x k( ) ˆ ( )0 ; where x0 is the real state. Thus the error dynamic can be written as:

+ = + +
−( )e t I K C e k K

S L x x
( 1) ˜ ( )

0
( ¯ )

(33)1
1

1

0

⎡
⎣⎢

⎤
⎦⎥

The second term in (33) may introduce a systematic error (bias) in the estimate. If the gain K1

is designed such that the observer is asymptotically stable, then as → ∞t ,
+ − →e t e tˆ ( 1) ˆ ( ) 0, and the steady state solution of (33) will correspond to

−
−

=
( )

K
R y R Cx

S L x x¯
0 (34)

ss

ss
1
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where xss is the steady state solution.
The second option defines the output so that the necessary conditions for optimality are

satisfied. Taking the first derivative of F(x) and setting to zero
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− + − =C R y Cx L SL x x( ) ( ¯ ) 0 (35)T T

the output map can be redefined leading to the following output equations

= +

= +

y C Ry L SLx

C C RC L SL

˜ ¯

˜ (36)

T T

T T

2

2

The observability matrix is now a square matrix = + C RC L SLT T , which must be full rank.
It is interesting to note that in this case, the existence of a unique solution implies also the
observability of x. The error dynamic is

+ = + + −( )e t I K C e k K L S L x x( 1) ˜ ( ) ( ¯ ) (37)T2
2

2
0

⎡⎣ ⎤⎦
where ∈ ×K Rn n2 is the observer gain. If K2 is designed such that such that the observer is
asymptotically stable, then the steady state solution of (37) will satisfy

− + − =( ) ( )K C R Cx Cx L SL x x¯ 0. (38)T ss T ss2
0

⎡⎣ ⎤⎦
In this case, given that K2 is a full rank matrix implies that there is a unique solution, xss, and
this one will be the regularized solution.

An observer based on (36) is precisely the gradient algorithm associated to the mini-
mization of (31), where the observer gain must be a positive definite matrix K2 since (31) is
convex; i.e. its Hessian is positive definite.

This option not only provides an observer with fewer parameters, since the gain matrix is
just a square matrix of order n compared with the n by +n Ml matrix of the first option, but
also provides a direct link between the solution of the optimization problem and the asso-
ciated characteristics of the observer.

Remark. For the observer based on (30), the gain matrix is not square and can be partitioned
as =K K K[ ]1

1
1

2
1 . After some algebraic manipulations, it can be shown that the observer based

on (30) will be equivalent to the one obtained using (36) if the observer gains are selected as

= =K K C R K K L S, . (39)T T
1
1 2

2
1 2

4.2. Optimal design

The cost function associated to the optimal design is given now in terms of matrix C̃ and
output ỹ , embedding in this way the spatial regularization in the observer design. For the
fictitious outputs defined by (30) and =−N I1 , the cost function (21) leads to

∑= ∥ − ∥ + ∥ − ∥ + ∥ − ∥

+ ∥ + − ∥

=
−

−

I t x x y Cx k Lx Lx k

x k x k

( )
1

2
(0) ˆ (0)

1

2
ˆ ( ) ¯ ˆ ( )

ˆ ( 1) ˆ ( ) (40)

M
k

t

R S

Q

2

0

2 2

2

1

1

⎡
⎣
⎢⎢

⎤⎦
as can bee seen in (40) the spatial regularization is taken into account in its third term.
Unfortunately, this function is not well posed since it is unbounded as t tends to infinity, even
if the observer converges. For a finite horizon, the problem can be solved using efficient
numerical algorithms as described in [23]. A bounded cost function can be obtained by
subtracting the optimal solution ; i.e. F x( )ss ,
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∑= ∥ − ∥ + − + ∥ + − ∥
=

− −( )( )I t x x F x k F x x k x k( )
1

2
(0) ˆ (0)

1

2
ˆ ( ) ˆ ( 1) ˆ ( ) . (41)

M
k

t
ss

Q
2

0

2
1 1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

By using the fictitious outputs defined by (36) in (21), the minimized functional can be
written as

∑

= ∥ − ∥

+ ∥ + − + ∥

+ ∥ + − ∥
=

−

−

−

( )

I t x x

C Ry L SLx C RC L SL x k

x k x k

( )
1

2
(0) ˆ (0)

1

2
¯ ˆ ( )

ˆ ( 1) ˆ ( ) ] (42)

M

k

t
T T T T

N

Q

2

0

2

2

1

1

1

⎡
⎣
⎢⎢

The cost function (42) represents a well posed cost function for dynamic regularization; i.e. it
is bounded if the observer converges.

The observer gain design can be carried out either by using the steady state solution
provided by (20) or using the recursive equation (23).

5. Simulated examples

As an illustrative EIT example a circular domain with 16 electrodes uniformly distributed is
considered. In order to solve the forward model and the simulated voltages a mesh of 2714
elements and 1447 nodes was used, as depicted in figure 1(a). In the inverse computations a
mesh of 480 elements and 281 nodes, as seen in figure 1(b), was considered in order to reduce
the number of variables to be estimated and to avoid the inverse crime.

The regularization matrix L is a sparse matrix with a row for each element in the mesh.
Every row of L has nonzero elements equal to 1 in the columns associated to neighboring
elements of i, and −ni in the column i; where ni is the number of neighboring elements. This
corresponds to the prior assumption of a homogenous field. A total of 256 measured outputs,
corresponding to 16 injection patterns, will be considered.

An observer and three different Kalman filters will be simulated. The observer is based
on (18), (19) and (20) with =y ỹ2 and =C C̃2. The linearized Kalman filter (LKF) is based
on equations (22) and (23). The regularized version with option 1 (RLKF1) considers =y ỹ1

and =C C̃1, and Regularized LKF with option 2 (RLKF2) considers =y ỹ2 and =C C̃2.
It is worth pointing out that the speed of convergence must be balanced against process

and measurement noise by tuning the weighting matrices Q, R and N. In order to illustrate the
effect of both N and S, they are assumed diagonal matrices defined as γ Iv and γ Is respectively,
where γv and γs are scalar weighting factors. table 2 summarizes the parameters used to
calculate the eigenvalues of +A KC for different values of γv and γs. The calculations con-
sidered the matrix A as the identity matrix and C as C̃1 for standard regularization and C̃2 for
the proposed one. As seen in figure 2, for both regularization approaches, increasing γv
increases the value of the largest eigenvalue; i.e. the speed of convergence decreases. On the
other hand, if γs increases the speed of convergence also increases.

One of the key issues in real-time operations is the number of floating point operations
(FLOPs) required to update the estimates. The following FLOP estimates are obtained by
considering an LU factorization to carry out the inverse of a matrix [9]. The number of FLOPs
required for a constant gain observer is given by
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Figure 1. FEM meshes.

Figure 2. Module of the largest eigenvalue of +A KC for the standard regularization
(solid line) and proposed approach (dashed line) for different values of γv and γs.

Table 1. Number of floating points operations for n = 430, m = 1, Ml = 256.

Algorithm p FLOPS

LKF 256 9.9606 108

RLKF1 686 2.6605 109

RLKF2 430 1.5489 109

OBS 430 1.8734 106

Table 2. Parameters of the different algorithms.

Algorithm S R N Q P (0)

LKF - - γ Iv 10 I 104 I

RLKF1 γ Is I γ Iv 10 I 104 I

RLKF2 γ Is I γC ICT
v 10 I 104 I

OBS γ Is I γC ICT
v 10 I 104 I

Inverse Problems 31 (2015) 045004 D Sbarbaro et al

11



Figure 3.Homogeneous field: normalized mean square errors (NMSEs) of the estimates
for different γv.
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= + + −FLOPS n np mn n2 4 2 3 , (43)Obs
2

and for Kalman filters

= + + + + + + − − −FLOPS n p
p

mn np np n p
p

n n6 2
3

2
2 2 2 4

5

6
2 , (44)KF

3 3
2

2 2 2

where n is the number of states, m number of inputs and p is the number of outputs. The
number FLOPs for a Kalman filter depends on p3, while for the observer it is just proportional
to p. Since the number of states and inputs are the same for all the algorithms, the number of
FLOPs required to accomplish one iteration is defined by the number of outputs, as
summarized in table 1. As seen in this table, the recursive algorithms require three order of

Figure 4. Homogeneous field: trace of the P(t) matrices P for different γv.
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Figure 5. Homogeneous field: Integrated NMSE for different γv.

Figure 6. Time-varying homogenous conductivity field.
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magnitude more FLOPs than the simple observer. It is also worth pointing out that the
proposed regularization approach; i.e. option 2, also requires 40% less FLOPS than the
conventional approach.

The normalized mean squared error (NMSE) and the integral of the NMSE, over a time
interval T, defined as follows:

∫ ρ ρ
ρ

=
−

Ω
NMSE t

t
s( )

ˆ ( )
d (45)0

0

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Figure 7. Time-varying homogenous resistivity field estimation by means of LKF.
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∫=INMSE
T

NMSE t t
1

( )d (46)
T

0

will be calculated for each experiment in order to compare their performance.
The first set of experiments considers a homogenous resistivity field with ρ = 200 and

measurements without noise. The initial conditions for all the algorithms are ρ =ˆ (0) 230 and
the different parameters for each of them are summarized in table 2. The regularization term
was selected as γ = −10s

3. In order to illustrate the effect of weighting matrix N, different
values of γv were considered.

The evolution of the NMSE is shown in figure 3 for different values of γv. As seen in this
figure all four algorithms have asymptotic convergence. The speed of convergence depends
on γv, smaller values of γv mean faster convergences. The regularized algorithms reach smaller

Figure 8. Time-varying homogenous resistivity field estimation by means of RLKF1.
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NMSE values compared with the plain LKF. It is interesting to note that for a given γv,
RLKF2 converges faster than the constant gain observer.

The long term evolution of the P(t) matrices in terms of their traces are given in figure 4.
The trace, in this case, provides an idea about the evolution of the diagonal values of P(t). As
it can clearly be seen for LKF, the trace of the P(t) matrix blows-out, while the ones
associated to the regularized filters are bounded. This result is a direct consequence of the lack
of observability associated to the model used by LKF.

The integral of the NMSE for the different algorithms are depicted in figure 5, as seen in
these figures as γv decreases, the INMSE will decrease up to reach a small final value. The
smallest final value was obtained by RLKF2.

Figure 9. Time-varying homogenous resistivity field estimation by means of RLKF2.
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The second set of experiments considers a homogenous conductivity field driven by an
external signal u(t) through the following dynamics

ρ ρ+ = +− −t t u t( 1) ( ) ( ) (47)1 1

The external signal u(t) is a periodic square pulse signal having a period of 100 samples.
The time-evolution of the conductivity field has a triangular form, as seen in figure 6, due to
the assumed dynamic, equation (47). All the algorithms were simulated by considering the
same weighting matrices with γ = −10v

3 and γ = −10s
2, and a measurement noise with an

amplitude of about 5% of the measured voltages values.
The NMSE, P(t) matrix and some estimated variables obtained by LKF are shown in

figure 7. Figure 7(a) shows that the NMSE decreases fast and is kept bounded; this residual
error is due to the fact that the observer has been designed by using an approximation around
a linearizing point. As in the previous examples, the model used by LKF does not satisfy the
observability condition and therefore the boundedness of the P(t) matrix cannot be ensured, as
seen in figure 7(b). Figure 7(c) shows the estimation of resistivities at two different locations,
as seen in the figure none of them approach the real values, which are depicted in red.

The regularized RLKF1 provides better estimates in terms of NMSE than LKF, as seen in
figure 8(a). The P(t) matrix is bounded as expected, figure 8(b). The difference between the
estimated resistivity values and the real ones is smaller than the one obtained by LKF, and at
the linearization point is very small, as shown in figure 8(c).

Figure 10. Time-varying homogenous resistivity field estimation by means of OBS.
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The regularized RLKF2 provides even better estimates in terms of NMSE than LKF and
RLKF1, as seen in figure 9(a). The P(t) matrix is also bounded as seen in figure 9(b). The
estimated values of the resistivity are closer to the real ones matching them at the linearizing
point, as shown in figure 9(c).

For the same set of parameter used for RLKF2, the observer has similar steady state
behavior, but slower convergence speed, as seen in figures 10(a) and (b). Figure 10(b) also
shows that the difference between the estimated resistivity values tends to zero. In addition,
the difference between the estimated resistivity values and the real ones converge to zero at
the linearizing point.

Different snapshots of the estimated field show high spatial variability for the LKF, as as
seen in figure 11(a). However, for RLKF1 the difference between the estimated values has
been decreased; which means an improved spatial smoothness of the estimated field, as
depicted in figure 11(b). For both RLKF2 and OBS the smoothness constraint has been
effectively enforced by the use of the regularization as seen in figures 11(c) and (d)
respectively.

The third set of experiments considers a circular object within a homogeneous field and
measurements without noise, as shown in figure 12.

Figure 11. Snapshots of the estimated time-variant homogenous field.
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The time variations of the background and object resistivities are periodic with periods of
100 and 150 samples respectively, as shown in figure 13.

A small regularization term, i..e. γ = −5 10s
5, is considered since the prior assumption

does not completely match the real spatial variations, and therefore some bias in the estimates
is expected. The linearization was carried out using a homogenous resistivity field with
ρ = 200 . As commented in section 3.4., this fact introduces some errors in the observation
model, which only affect the final error but not the stability of the algorithms. In this example,
as the resistivities vary independently, the standard random walk model; i.e. without inputs,
was assumed for describing their dynamics. This example also shows that it is possible to
estimate time-varying conductivities even though we do not measure the inputs.

The NMSE, P(t) matrix and some estimated variables obtained by LKF are shown in
figure 14. The NMSE decreases fast and is kept bounded, as seen in figure 14(a). The

Figure 12. Inhomogeneous resistivity field.

Figure 13. Evolutions of the resistivities: background (continuous), circular 
object (dashed).
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Figure 14. Object and background resistivity estimation by means of LKF.
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evolution of P(t) in figure 14(b) shows a linear growth. Figure 14(c) shows the estimation of
resistivities at different locations, as seen in the figure the estimated resistivities of the object
converge near to the real values, but the estimates of the background remain far away from
the real values. This means that the estimated homogenous field has high spatial variability, as
seen in figure 18(a). The fact that LKF can provide reasonable estimates in a finite time for ill-
conditioned problems is not a surprise, since early stopping provides some kind of regular-
ization that can also be used for obtaining regularized solutions as described in [21] .

Figure 15. Object and background resistivity estimation by means of RLKF1.
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The regularized RLKF1 provides better estimates in terms of NMSE than LKF, as seen in
figure 15(a). The P(t) matrix is bounded as expected, see figure 15(b). The difference between
the estimated resistivity values and the real ones for the object are bigger than the one
obtained by LKF. However, the differences for the background resistivities are smaller and at
the linearization point are very small, as shown in figure 15(c). Better estimates of the
homogenous field also means a less spatial variation of the estimated field. The overall
performance, in terms of the NMSE, is better than the LKF.

Figure 16. Object and background resistivity estimation by means of RLKF2.
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The RLKF2 provides smaller NME values compared with RLK1, as seen in figure 16(a).
Figure 16(b) also shows that the difference between the estimated resistivity values tends to
zero at the linearization point, but the estimation errors are bigger far away from this point.

For the same set of parameter used for RLKF2, the observer has similar steady state
behavior, but slower convergence speed, as seen in figures 17(a) and (b). It is worth pointing
out that the use of an observer may be attractive when it is necessary to reach a compromise
between a reduction on the number of calculations and transient performance.

Different snapshots of the estimated field obtained by LKF as depicted in figure 18(a)
show that the estimated resistivities of the object converge near to the real values, but the
estimates of the background remain far away from the real values. This means that the
estimated homogenous field has high spatial variability. The use of regularization by RLKF1
enforces some smoothness on the conductivity field obtaining better estimates of the back-
ground as seen figure 18(b). The estimated field obtained by RLKF2, figure 18(c), is very
similar to the one obtained by RLKF1. The estimates obtained by the observer show that the
smoothness of the estimations has also been preserved, as seen in figure 18(d).

Figure 17. Object and background resistivity estimation by means of OBS.
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6. Conclusions

In this paper we have analyzed the solution of an EIT inverse problem from the per-
spective of a dynamic estimation problem providing some insight about the relationship
between system properties and the performance of estimation algorithms. The concept of
observability plays a key role in solving the dynamic estimation problem since it ensures
the existence of a solution. The results show that the lack of observability prevents the
use of dynamic estimation algorithms in real-time, since under this condition it is not
possible to obtain meaningful estimates, and also to ensure the boundedness of all the
signals.

The design of estimation algorithms for EIT have traditionally considered the regular-
ization of the inverse problem by the addition of extra outputs. The concept of observability
not only validate this approach, but also extends its significance by taking into account the
system dynamic and ensuring, in this way, the well-posedness of the estimation problem.

The interpretation in terms of observers enables the design of estimation algorithms with
prescribed speed of convergence, low complexity in terms of the number of floating point
operations, and similar performance compared to recursive estimation algorithms. In addition,

Figure 18. Snapshots of the estimated field.
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an alternative output definition for taking into account the regularization term in the observer
structure has been proposed. This provides a direct connection between the existence of the
regularized solution and the observability of the system, and it also enables the use of an
infinite cost function to address optimal observer design. A key feature of this approach is the
important reduction in terms of FLOPS compared to the traditional one. The extention of
these results to reduce the estimation error by considering the nonlinear nature of the EIT
inverse problem is part of our current research interest.
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