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Abstract— An autonomous machine vision module for
Unmanned Aerial Vehicle (UAV) navigation for inspection
of wind turbines is presented. The system estimates the
relative position and distance between the UAV and the
wind turbine, as well as the position of its blades, in order
to support the initial phase of autonomous inspection
before the UAV start to move along the blades to acquire
pictures. The key algorithms used are Hough transform
for detection of the wind turbine tower, hub and blades,
as well as the Kalman filter for tracking. Experimental
data acquired by a UAV at a wind park is used to
evaluate the accuracy and robustness of recognition and
navigation. It is found that under the tested conditions,
the method gives sufficient accuracy for the task and can
execute in real time on a single board computer in the
UAV.

I. INTRODUCTION

The commonly used approaches for wind tur-
bine inspection are mainly inspection through
telescopic lenses, by lift or climbing (including
maintenance and repair), or recently by using
remotely piloted UAVs. Modern wind turbines
have dimensions of 100 meters or more, so an
autonomous or remotely controlled UAV could be
able to approach the inspection target closely with
high accuracy compared to telescopic photography.
Another factor is the cost, which is expected to
be significantly smaller with UAVs than manual
inspection by climbing. For offshore wind turbines
these arguments are even much stronger. For a
similar case, inspection of power lines, [1] de-
scribed several reasons why using a small UAV
is preferable.

We focus on multi-rotor UAVs, which can hover
and are typically simpler to operate and less influ-
enced by vibrations than helicopters. Their primary
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limitation for wind turbine inspection is endurance.
Such a UAV is typically set up to navigate with an
Inertial Measuring Unit (IMU), magnetic compass,
and a Global Navigation Satellite System (GNSS),
and can carry cameras to be used for navigation
and inspection data acquisition. This paper will
focus on a machine vision system to autonomously
recognize the wind turbine’s relative yaw angle and
position of blades, which cannot be determined
without imaging sensors, manual operations, or a
data interface to the wind turbine control system.
The latter may be impractical, error-prone, or sim-
ply unavailable (e.g. for an independent inspection
service company).

Visual navigation is extensively studied for
multi-rotors, in particular for navigation in GNSS-
denied environments and collision avoidance [2],
[3], automatic landing [4], [5], [6], [7], and visual
servoing for tracking of features [8], [9], [10],
[11], [12], [13], [14], [15], but is not much studied
for wind turbine inspection application. Related
applications are power line inspection using UAVs
where Hough transform is used to detect the power
lines, [16], and bridge inspection using visual
servoing [17].

The contribution of this paper lies in elaborating
on machine vision methods for which the wind
turbine can be recognized, and how its features can
provide orientation estimates. The paper focuses
on the key visual features of the wind turbine, and
the use of key algorithms including the Hough-
transform and Kalman-filtering. Videos of wind
turbines were recorded from a multi-copter UAV
at Bessakerfjellet wind park for testing and valida-
tion. Algorithms available in the OpenCV library
are utilized. Emphasis is placed on keeping com-
putational demand to a level which can be handled
by the Single-Board Computer (SBC) which is
operating in real time on the UAV. Further details
are found in [18].



The scope of this research is limited to the
initial positioning and recognition phase of an
inspection. That is, to approach from an initial
point where the UAV has arrived in adjacency of
the wind turbine using GNSS navigation or manual
piloting, to the inspection starting point which is
chosen to be directly in front of the hub of the
wind turbine. We point to [18], [19] for results
on camera-based tracking of position, velocity and
attitude relative to the wind-turbine blades during
the actual inspection phase.

II. AUTONOMOUS NAVIGATION

Wind turbines have typically three degrees of
freedom for rotation. Their yaw angle about the
tower’s vertical axis can change to optimize at-
titude relative to wind directions. Second, their
blades rotate about an axis that is aligned with
the shaft that transfer power into the hub. Finally,
the blade pitch angles may be possible to vary in
order to optimize power generation.

It is assumed that for inspection, the wind tur-
bine is at standstill with arbitrary angles of tower
yaw angle, blade rotation and pitch. The navigation
requirements for wind turbine inspection is divided
into the following phases:

1) Initial positioning. It is assumed that GNSS
and altimeter is used for initial positioning
of the UAYV, leading to a pre-defined absolute
position that is at a given distance to the
tower, but with unknown relative yaw-angle
to the tower and blades. This distance must
be larger than the blade radius to avoid
collision risk.

2) Initial relative positioning and recogni-
tion. Using machine vision, the next step is
to position the UAV directly in front of the
hub, more specifically that it is located at a
given distance near a line that is orthogonal
to the disc where the wind turbine blades
are, as illustrated in figure 1. In this way, the
inspection starts at a known relative position
to the hub and disc.

3) Positioning and tracking for inspection.
In this phase, the UAV moves along the
wind turbine hub, blades and tower in a pre-
defined motion pattern in order to perform
inspection, which typically consist of acqui-
sition of pictures, navigation data and other

measurements that will be processed later.
During this phase the guidance, navigation
and control needs to keep the inspection
object at the correct relative distance, attitude
and velocity for successful inspection.

4) Relative terminal positioning. Moving
away from the last inspection position to a
given (safe) distance from the wind turbine
hub and blades.

In this paper we focus on the 2nd phase, relative
initial positioning, that provides an initial configu-
ration for the 3rd and 4th phases. In addition, there
might be emergency operating modes that are not
considered here.

A. Initial relative positioning and recognition

This phase contains three separate tasks (T1,
T2 and T3). Each task is given a priority from
T1 at highest to T3 at lowest. Only when the
conditions for one task is fulfilled the program
moves to the next. Furthermore, if during one
task the conditions for a higher prioritized task is
invalidated the method reverts back to complete
the higher prioritized task. A summary of the
procedure is given by the pseudo-code:

while not reached desire distance do
if visual target not in boundary then © T1
if visual target above/below then
move vertically

if visual target too far left/right then
rotate about the yaw axis

else if |relative yaw| > tolerance then > T2
move laterally
else
move forward

The first task, T1, makes sure that the UAV is
facing the target position i.e. the hub of the wind
turbine. If the visual target is inside the boundary,
the conditions for this task are fulfilled and the
next task is initiated.

For the second task, T2, the objective is to
achieve the desired relative yaw angle of the wind
turbine by flying laterally such that the relative an-
gle is reduced until a certain tolerance is reached.
Naturally, by moving laterally one will also ex-
perience the wind turbine moving horizontally in
the camera frame, albeit slowly compared to the
effect of UAV yaw rotation. Consequently, once
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the target moves outside the rectangle described
in the first task, the first task becomes prioritized
and adjusts the attitude to bring the target back
inside the boundary. The result of the combined
alteration of T1 and T2 is thus a circular motion
around the wind turbine, as illustrated in figure 1
by the segments marked T1 and T2. As the relative
yaw is reduced past a certain threshold indicated
by the green triangle, the relative yaw is deemed
as sufficiently small.
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Fig. 1: Top-down perspective showing an example
scenario of the navigation path (red line). Indi-
cations show when each task is run. The green
triangle illustrates the tolerated range for relative
yaw.

The third task, T3, commands the UAV to move
forward towards the target until the desired dis-
tance has been reached. A correct course is ensured
and maintained by the former tasks. Should a
disturbance cause the UAV to lose its heading or
get a too big yaw angle, it reverts to T1 or T2,
respectively, to correct the error.

It is assumed that the UAV altitude is kept
constant at a suitable level near the top of the
tower.

B. Estimation of Distance to Tower

The navigation approach relies on being able
to detect when the UAV has reached the desired
distance. This can be achieved by applying the
pinhole camera model (e.g. [20]). By rearranging

this model with respect to a given object’s distance
to the camera, x¢, one obtains
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where f is the focal length, (3%, 2%) are image
coordinates in the image plane, and (z¢, y°, 2¢) are
local coordinates in the coordinate frame aligned
with the camera mounted on the UAV. Now, let
the measured width and height of the given object
be given by Ay’ and Az’ in the image plane. If
the actual width or height of the same object is
known and given by Ay® and Az¢ the distance
d = x° can be estimated by either of the following
equations:
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A suitable target object would be the tower having
a known width. The tower has easily distinguish-
able edges that provides a reliable basis for this
approach. The tower is usually wider at its base,
therefore a specific area of the tower should be
targeted. The uppermost area was found to be the
best choice because this area persists inside the
field of view at all distances.

Az° )

C. Estimation of Tower Yaw Angle

One can observe from Figure 2 that as the yaw
angle increases, two points which are behind each
other when viewed from straight ahead, tend to
drift apart. In particular, the center of the hub and
the top of the wind turbine tower, which are among
the easiest points to determine, form the distance
0 in the image plane.

Fig. 2: The gap between the hub center and tower
increases as the yaw angle increases.



Consider the pinhole camera model:
6= glAp“’!sinw (3)

where Ap® is the actual distance between the
two points (assume to be a known constant from
the geometry of the wind turbine), and ) is the
difference in yaw angle between the wind turbine
and camera coordinate frames. Hence,

1) = arcsin (%) €))

D. Estimation of blade orientation

For a wind turbine with three blades it is known
that there is a 120 degree angle beween them.
For the initial phase of the positioning in order
to start tracking blades, it is necessary to estimate
the blades orientation relative to the fixed vertical
tower as considered in Section III-D.

III. MACHINE VISION

The camera-based autonomous navigation algo-
rithm runs in a loop where a new iteration is
initiated at the arrival of a new image frame, see
Figure 3.

A. Wind turbine visual features

In order to successfully recognize and track
the features needed to perform the estimation and
navigation functions described above, it is of key
importance to identify the characteristics which
distinguish the main parts of the wind turbine
(tower, blades and hub) from its surroundings.

1) Texture and color: The smooth surface of
a wind turbine has virtually no texture, making
the wind turbine more distinctively separated from
the background. Despite being white in color, a
wind turbine can appear in any shade of gray or
weak color depending on the lighting conditions
and reflections from its environment. However, no
particular color tone should be prominent.

2) Geometry: The distinct shape of the wind
turbine is of great importance as it possesses many
features which can be applied by image analysis
algorithms. In particular, the straight edges of the
rotor blades and the tower are favorable subjects
for edge or line detection algorithms. Further-
more, the radial shape displayed by the tower
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Fig. 3: Activity diagram describing the flow of the
machine-vision-based autonomous navigation.

and the blades provides solid foundation for many
approaches. In addition, a similar shape is not
expected to appear elsewhere in the environment
(except for other wind turbines which might be
present).

3) Size: Since GNSS is more practical to use
when far away, the UAV is expected to be close
to the wind turbine when the algorithm is used. At
this range the wind turbine, when in view, should
cover a large portion of the image frame and
stretch out of the frame when at close distances.
Consequently, as long as the UAV is not moving
too fast and is facing the wind turbine, it should be
clearly visible in the image. The size of the wind
turbine as it appears in the image can also serve
as an estimate of the distance from the UAV.

Prolonged failed detect



4) Movement: It is assumed that the wind tur-
bine is stopped for maintenance so that the blades
do not rotate. However, when the UAV moves,
the images show a movement of the wind turbine
relative to the background.

5) Point-of-view: It will generally be assumed
that the UAV is positioned in front or behind of
the wind turbine such that the rotor blades or
tower usually do not overlap. When directly in
the front or back the angle between the blades are
120 degrees. A change of perspective skews the
image altering both angles and proportions, thus
providing cues for estimating the yaw orientation
of the wind turbine.

6) Environment: Under clear weather condi-
tions a blue sky serves as excellent contrast to the
wind turbine. In such conditions, shadows might
cause challenges. Clouds and gloomy weather
leads to less contrast, which might also interfere
with detection. Depending on the height and the
pitch angle of the camera, the horizon, other wind
turbines or straight features may appear at varying
height in the image. If they appears too close to
the hub, they are expected to interfere with blade
detection.

B. Hough line transform

The Hough transform, [20], is used to detect
straight line features such as the tower and blades
of the wind turbine. The progressive probabilistic
Hough line transform [21] in OpenCV runs effi-
ciently. These properties make the Hough trans-
form attractive, and it was therefore chosen as the
basis for the recognition program.

Considering the detected lines, there are some
issues. Sometimes a line which should be detected
as a single line is broken into smaller segments.
Another issue may appear if there is a significant
amount of noise in the image. Small changes can
affect the resulting edge map, resulting in frame
to frame variability of the Hough transform. This
has a notable effect on the start and end points of
the detected lines. Those matters aside, the Hough
transform was found to give accurate description of
the contours of the wind turbine. The direction and
location of the lines makes it possible to identify
the blades and tower along with their orientation.

C. Pre-processing and Canny edge-detector

The Hough transform operates on a binary rep-
resentation of the image, and it is necessary with
pre-processing that should also make the algorithm
robust to background, lighting conditions, UAV
motions not compensated for by image stabiliza-
tion (in camera, gimbal or software), and other
sources for inaccuracies.

We use the standard Canny edge detection,
where the first part consists of computing direc-
tional derivatives using the Sobel operator, [20],
based on gray-scale images. It utilizes two 3 x 3
kernels for vertical and horizontal differentiation.
Then the edges are thinned by keeping only the
strongest gradients along the edge when tracking
the edges. The final step converts the edge map to a
binary image and removes weak edges that are not
likely to be of significance. This is done through
hysteresis thresholding where the thresholds are
tuned experimentally.

D. Wind turbine recognition

1) Locating the tower: Among the parts of the
wind turbine, the tower is arguably the simplest to
correctly identify. Similarly to the blades it tends
to exhibit long and distinct edges, but whereas the
blades may settle in any orientation, the tower is
fixed in its vertical stance. Therefore one could
begin by searching for vertical lines, with a few
degrees tolerance. An issue arises due to the preva-
lent roll of the UAV. One solution is to use the roll
angle estimated from the IMU to adjust the search
angle. Another option is to mount the camera on a
gimbal stabilizer to physically prevent rotation of
the image frame.

Because the UAV expectedly flies at an altitude
at level with the hub, the base of the tower will be
below the bounds of the image and consequently
the lines of the tower continues beyond the lower
edge of the image frame. Based on this knowledge
another restriction is imposed; the lines represent-
ing the tower must possess an ending point near
the lower bound of the image.

2) Locating the blades: 1f at least one line
was identified as part of the tower, the algorithm
proceeds to search for the lines of the blades.
By identifying the highest point among all the
tower lines, a first estimate is provided for the hub
location. Thus by searching for lines ending in a



circular area around this point one can expect to
find lines belonging to the blades.

An issue with this approach occurs when the
horizon appears at a vertical position in the image
close to the hub, which can potentially lead to
it being incorrectly identified as a blade. One
cannot simply ignore horizontal lines, because (as
is apparent in Figure 4) a blade may also be
horizontally aligned.

The lines which were determined to belong
to blades are sorted by angle and grouped with
other lines of adjacent angles. Together each group
form a single blade object, where their average
angle determines the estimated angle of the blade.
Similarly, the tower lines form a tower object.

The property of there being a 120 degree angle
between the blades is utilized by implementing a
voting system. A blade which receives a certain
amount of votes is assumed to be a false de-
tection and is removed. The voting is conducted
by comparing each detected blade to each other.
If the angle between two blades is not close
enough to 120 degrees by a certain tolerance, both
blades obtain a vote. The tolerance was set to 20
degrees to accommodate for measurement error
and skewed angles due to potential yaw angle
difference between the UAV and wind turbine.
Setting the vote limit to 3, such that three votes or
more signifies a false blade, proved to work well.
Thus, if for instance, the three actual blades plus a
fourth false blade is detected, then the false blade
receives three votes in total from the actual blades
and is removed. Meanwhile, the true blades receive
only one vote from the false blade. Figure 4 shows
how the false blade lines are removed when voting
is successful.

3) Locating the hub center: The first step is
to calculate intersections between the recognized
blade lines. Since all the blades beam out from the
hub, the hub location can be found by calculating
their common intersection point. However, it can
be observed in Figure 4 that the detected lines
for the blades are sources of disagreement. For
instance, by looking at the upper right blade one
observes that the curvature on the lower edge
causes a steeper angle on the corresponding line
compared to the lines from the upper edge. Since
lines are detected at both edges of the blades
there will be a spatial disagreement as well. At
this point it is unclear which lines provide the

Fig. 4: The false detections have been removed
by the voting procedure. Only the green lines
corresponding to the actual blades detected.

appropriate result. This was handled by calculating
the intersection points between every line pair,
except between lines belonging to the same blade,
see Figure 5.

Fig. 5: The green circles show the points where
the blade lines intersect each other.

The second step is to obtain the average in-
tersection point. From the previous step there
may appear some stray intersection points causing
discrepant results. For instance, if the horizon is
incorrectly detected as a blade it can intersect with
the other blades at a distance far from the hub.
To prevent such scenarios, restrictions are imposed
on the points of intersection. Points which have
horizontal position far from the line extended by
the tower are ignored. Since the actual vertical
position of the hub is more uncertain, a less strict
restriction is imposed on vertical distance based on
the temporary estimated hub center (highest point
among the tower lines). After the points caught by
the restrictions have been removed, an average is
calculated from the remaining points which results
in the estimated hub center position.



E. Feature Tracking

Feature tracking refers to tracking how a feature
moves or evolves over time in a sequence of
images. This requires state information about its
position being updated between frames. Our algo-
rithm tracks the position of the hub center in the
image frame, so that the UAV can be maneuvered
in the fashion described in section II.

Noise and failure to detect the hub is dealt
with using the Kalman filter with a simple motion
model where the velocity is modeled as a Markov
process, [20]. For the case when the hub is not
detected one may estimate its position using a
prediction from the model of the filter. This is
done by only running the prediction step in the
Kalman filter, while skipping the measurement
update steps. Consequently, the program will still
have knowledge of the states of the object, and
can act accordingly. However, if the program is
not able to locate the hub after an extended period
of time, e.g. when the covariance exceeds a given
threshold, instead of continuing to blindly rely on
the model it should switch to the searching state
where movement is stopped until the wind turbine
has been identified again by rotating about the yaw
axis to search.

IV. EXPERIMENTAL RESULTS

In this section the program will be evaluated
by using video sequences as input. The videos
were recorded at Bessakerfjellet wind farm using
a GoPro camera mounted in a stabilizing gimbal
on a hexa-copter. The experiments mimic the ma-
neuvering plan described in Section II-A, to get
representative footage at the expected range and
angles. The images are down-sampled to 480x270
pixels.

The UAV is controlled using an ArduPilot au-
topilot. It can receive commands from the pilot via
the operator display or remote control unit. It can
also receive commends from an on-board Pand-
aBoard SBC where the machine vision, estimation,
navigation and high-level control is implemented
in real-time.

A. Recognition performance

The Canny edge detector was found to be a criti-
cal part in order to perform robustly under lighting
variation, and good tuning of its parameters is

(d)

Fig. 6: (a) Shows how the shadow under the hub
causes a split left edge of the tower which in (b)
results in two separate Hough lines. (c) Shows
how the same shadow blends into the background
and hides the edge, which leads to no Hough line
detected in (d).



important. A change in lighting can affects the in-
tensity distribution in the image, and can thus alter
the strength of the edges. The hysteresis threshold
values need to be adjusted low enough to accept
the most prominent edges, but high enough to filter
weaker unwanted edges. It should be emphasized
that the transitions from good to bad is gradual,
and we have only studied a limited number of
videos from a single site under a limited number
of weather and lighting conditions. The Hough
line transform was found to be inherently robust.
Because the shape of the wind turbine always
remains the same, a specific set of parameters will
produce similar results unless the Canny detector
outputs a significantly different edge map, in which
case the Canny edge detector needs to be adjusted.

Assuming the minimum requirements for suc-
cessful detection are met, it will now be discussed
how a detection may fail. This can occur when
either the tower is not detected or if the sufficient
amount of valid blades is not detected. Tower
detection fails if a too small part of the tower is
visible. If the tower edges are split into smaller
lines, it can lead to failed detections of hub po-
sitions. Such an issue arose with the appearance
of a shadow cast by the hub onto the tower. For
example, Figure 6 shows how this shadow disrupts
the edge detector and consequently also the Hough
transform. Worse than segmenting the lines, it can
hide the edges completely in the shadow area if
the background is of matching color, such that the
highest point among the tower lines (which form
the center for the blade search area) is lower than it
should be. The effect is stronger when the distance
to the wind turbine is shorter, because then the
shadow appears larger in the image.

Another scenario is when too many blades are
(incorrectly) detected. Then there is much uncer-
tainty as to which detections are true blades, and
the voting procedure will discard all detections.

B. False positives

A successful detection does not necessarily im-
ply a correct detection, due to the occurrence of
false positives, being detected tower lines or blade
lines which do not actually correspond to edges of
the tower or blades.

On the other hand, false blade detections oc-
curred more frequently. Every detected line which

has an end point inside the blade search radius
yields a true or false positive. This was most
commonly caused by the horizon and the visible
parts of the hexa-copter itself, see Figure 7, and
to some degree the environment when the blade
search radius was big. However, the environment
produced very few edges in general. Many of the
false edges are removed by the voting procedure
(section III-D.2) or are dominated by the usually
more numerous true blade edges.

Fig. 7: The interference of the hexacopter is an
example of where the edge of another entity is
falsely detected as a blade edge, illustrated by the
incorrect green line.

C. Distance estimation

Distance is estimated using eq. (2) with the
width of the tower as known information. This
was done by first finding the outermost tower
lines, and extending them to a common height and
measuring the length between them (in pixels). It
was considered to use the highest point among all
tower lines as the common height, but since this
point can vary significantly between frames the
bottom edge of the image was chosen instead. This
causes a more stable estimation, but corresponds
to a more uncertain actual width of the tower.

The results are shown in figure 8. It is observed
that the resolution of the distance estimations is
low, which is due to the low display resolution in
the image. For instance, a single pixel in difference
causes a jump in distance estimation from 35.2
m to 39.6 m. The results show estimations with
somewhat larger distance than this in general. For
clip # 1 and towards the end of clip # 2, the actual
distance is roughly unchanged, but the results
showed the estimated distance increasing. This is



because the hexa-copter was flying upwards, and
thus a higher part of the tower (which is thinner)
is measured. The spikes almost reaching zero from
video clip # 1 are caused by detection of the tower
of another wind turbine. In video clip # 2 there is
most variation at the beginning towards the 150th
frame because the hexa-copter moves forward and
upwards.

Estimated distance, video clip #1
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Fig. 8: Estimated distances for video clip # 1 and
2. Actual distances were roughly estimated to lie
around 30 and 15 meters for clips # 1 and 2,
respectively.

D. Yaw angle estimation

Yaw estimation was done using eq. (4). Distance
estimates from the previous section was used for
d. The results are shown in Figure 9. The aver-
age value does not lie too far from the expected
values, but there is significant amounts of noise.
An essential cause for the high sensitivity is that
the actual distance between the hub center and the
top of the tower is short compared to the distance
from the hexa-copter and the measured length,
0. Since a low threshold value for the Canny
edge detector was used, the hub center estimation
was less accurate, affecting the measurement of
which relies on this value.
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Fig. 9: Yaw angle estimation for video clip # 1
and 2. The actual angles were roughly estimated
to lie around -10 and 30 degrees for clips # 1 and
2, respectively.

E. Real-time performance

The computation time was examined on the
PandaBoard SBC with an e-CAM-51 USB camera.
The results show a computation time per frame
mostly in the range of 90-140 ms which translates
to around 7-11 Hz. The Hough transform accounts
for the majority of the computations with 60-80 ms
per frame.

V. CONCLUSIONS

A machine vision algorithm for recognition and
tracking of a wind turbine has been presented.
Based on knowledge from the tracking data a
method was suggested for approaching the wind
turbine for inspection. The wind turbine recogni-
tion algorithm was based primarily on the Hough
line transform, due to its ability to capture the
main features of the wind turbine and its low com-
putational demand. The hub center position was
estimated by analyzing Hough lines and tracked
using a Kalman filter. Experimental data acquired
by a UAV at a wind park is used to evaluate the
accuracy and robustness of recognition and navi-
gation. It is found that under the tested conditions,



the method gives sufficient accuracy for the task
and can execute in real time on a single board
computer in the UAV.

ACKNOWLEDGMENTS

This work was supported by the Research Coun-
cil of Norway through the Centers of Excel-
lence funding scheme, Project 223254 - Centre
for Autonomous Marine Operations and Systems
(AMOS). The authors thank UAV operations man-
ager Lars Semb at NTNU, @ystein Skotheim at
SINTEF ICT, and TrgnderEnergi Kraft AS for
access to Bessakerfjellet wind park.

REFERENCES

[1] M. Williams, D. Jones, and G. Earp, “Obstacle avoidance
during aerial inspection of power lines,” Aircraft Engineering
and Aerospace Technology, vol. 73, no. 5, pp. 472-479, 2001.

[2] S. Hrabar, G. Sukhatme, P. Corke, K. Usher, and J. Roberts,
“Combined optic-flow and stereo-based navigation of urban
canyons for a UAV,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2005, pp. 3309-3316.

[3] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision
based MAV navigation in unknown and unstructured environ-
ments,” in IEEE Int. Conf. Robotics and Automation (ICRA),
May 2010, pp. 21-28.

[4] S. Saripalli, J. Montgomery, and G. Sukhatme, “Visually
guided landing of an unmanned aerial vehicle,” IEEE Trans.
Robotics and Automation, vol. 19, no. 3, pp. 371-380, June
2003.

[5] J. Courbon, Y. Mezouar, N. Guénard, and P. Martinet, “Vision-
based navigation of unmanned aerial vehicles,” Control Engi-
neering Practice, vol. 18, no. 7, pp. 789 — 799, 2010, special
Issue on Aerial Robotics.

[6] A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti, and
S. Longhi, “A vision-based guidance system for UAV navi-
gation and safe landing using natural landmarks,” in Selected
papers from the 2nd International Symposium on UAVs, Reno,
Nevada, 2009. Springer Netherlands, 2010, pp. 233-257.

[71 Y. Zhou, T. Wang, J. Liang, C. Wang, and Y. Zhang, “Struc-
tural target recognition algorithm for visual guidance of small
unmanned helicopter,” in Proc. IEEE Int. Conf. Robotics and
Biomimetics, Guangzhou, China, 2012, pp. 908-913.

[8] N. Guenard, T. Hamel, and R. Mahony, “A practical visual
servo control for an unmanned aerial vehicle,” IEEE Trans.
Robotics, vol. 24, no. 2, pp. 331-340, April 2008.

[9] L. Mejias, S. Saripalli, G. S. Sukhatme, and P. Cervera,

“Visual servoing for tracking features in urban areas using an

autonomous helicopter,” J. Field Robotics, vol. 23, pp. 185

—-199, 2006.

O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette,

T. Hamel, L. Eck et al., “Image-based visual servo control

of the translation kinematics of a quadrotor aerial vehicle,”

IEEE Trans. Robotics, vol. 25, no. 3, pp. 743-749, 2009.

E. Frew, T. McGee, Z. W. Kim, X. Xiao, S. Jackson, M. Mori-

moto, S. Rathinam, J. Padial, and R. Sengupta, “Vision-based

road-following using a small autonomous aircraft,” in Proc.

IEEE Aerospace Conference, 2004, pp. 3006-3015.

(10]

(1]

(12]

[13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

S. Rathinam, Z. Kim, A. Soghikian, and R. Sengupta, “Vi-
sion based following of locally linear structures using an
unmanned aerial vehicle,” in Proc. IEEE Conf Decision and
Control, Seville, Spain, 2005, pp. 6085-6090.

E. W. Frew, “Comparison of lateral controllers for following
linear structures using computer vision,” in Proc. American
Control Conference, Minneapolis, 2006, pp. 2154-2159.

S. Rathinam, P. Almeida, Z. W. Kim, S. Jackson, A. Tinka,
W. Grossman, and R. Sengupta, “Autonomous searching and
tracking of a river using an UAV,” pp. 359-364, 2007.

T. S. Bruggermann, J. J. Ford, and R. A. Walker, “Control of
aircraft for inspection of linear infrastructure,” IEEE Trans.
Control Systems Technology, vol. 19, pp. 1397-1409, 2011.
S. Du and C. Tu, “Power line inspection using segment
measurement based on ht butterfly,” in IEEE Int. Conf. Signal
Processing, Communications and Computing (ICSPCC), Sept
2011, pp. 1-4.

N. Metni and T. Hamel, “A UAV for bridge inspection: Visual
servoing control law with orientation limits,” Automation in
Construction, vol. 17, no. 1, pp. 3 — 10, 2007.

M. Stokkeland, “A computer vision approach for autonomous
wind turbine inspection using a multicopter,” 2014, master
thesis, Department of Engineering Cybernetics, Norwegian
University of Science and Technology, Trondheim.

S. Hgglund, “Autonomous inspection of wind turbines and
buildings using an UAV,” 2014, master thesis, Department
of Engineering Cybernetics, Norwegian University of Science
and Technology, Trondheim.

E. R. Davies, Computer and machine vision: Theory, algo-
rithms, practicalities, 4th ed. Elsevier, 2012.

J. Matas, C. Galambos, and J. Kittler, “Robust detection of
lines using the progressive probabilistic Hough transform,”
Computer Vision and Image Understanding, vol. 78, no. 1,
pp- 119 — 137, 2000.



