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Abstract
A numerical algorithm for approximate multi-parametric
nonlinear programming is developed. It allows approximate
solutions to nonlinear optimization problems to be computed
as explicit piecewise linear functions of the problem param-
eters. In control applications such as nonlinear constrained
model predictive control this allows efficient online imple-
mentation in terms of an explicit piecewise linear state feed-
back without any real-time optimization.

1 Introduction
Exact solutions to multi-parametric quadratic and linear pro-
grams (mp-QP/mp-LP) can be found using the methods of
e.g. [1, 2, 3]. These recently developed algorithms al-
lows the off-line computation of explicit piecewise linear
(PWL) state feedback control laws for linearly constrained
linear/quadratic optimal control problems. This facilitates
efficient real-time implementation of constrained optimal
feedback control strategies such as model predictive control
(MPC) without the use of real-time optimization, see also
[4, 5, 6]. MPC can be implemented on low-cost hardware and
with low software complexity in embedded systems. This
opens new application areas for MPC, which has tradition-
ally been restricted to slow process plants.
For general multi-parametric nonlinear programs (mp-NLPs)
one cannot expect to find exact solutions. There is a large
body of theory that develops local regularity conditions and
local sensitivity results [7, 8], and algorithms for large param-
eter variations are derived for single-parametric problems [9].
Here we propose an approximate mp-NLP algorithm utiliz-
ing NLP and mp-QP algorithms to solve local sub-problems,
with applications to nonlinear constrained MPC problems
in mind. Approximate mp-QP methods with application to
linear constrained MPC problems have been suggested by
[10, 11, 12]. Related function approximation methods for
non-linear optimal control are described in [13, 14, 15].

2 Problem formulation
Consider the nonlinear dynamic optimization problem

J(u[0, T ], x[0, T ]) ,
∫ T

0

l(x(t), u(t), t)dt + S(x(T ), T )

(1)

subject to the inequality constraints fort ∈ [0, T ]

umin ≤ u(t) ≤ umax (2)

g(x(t), u(t)) ≤ 0 (3)

and the ordinary differential equation (ODE) given by

d

dt
x(t) = f(x(t), u(t)) (4)

with given initial conditionx(0) ∈ X ⊂ Rn. The input sig-
nal u[0, T ] is assumed to be piecewise constant and parame-
terized by a vectorU ∈ Rp such thatu(t) = µ(t, U) ∈ Rr is
piecewise continuous. The solution to (4) is assumed in the
form x(t) = φ(t, U, x(0)) for t ∈ [0, T ] and some piecewise
continuous functionφ. Relaxing the inequality constraints
(3) to hold only atN time instants{t1, t2, ..., tN} ⊂ [0, T ],
we can rewrite the optimization problem in the following
standard parametric form (direct single shooting, e.g. [16])
where the ODE constraint (4) has been eliminated by substi-
tuting its solutionφ into the cost and constraints; minimize
with respect toU the cost

V (U ; x(0)) ,
∫ T

0

l(φ(t, U, x(0)), µ(t, U), t)dt

+S(φ(T, U, x(0)), T ) (5)

subject to

G(U ; x(0)) ,
(

G̃(U ; x(0))
U − Umax
Umin − U

)
≤ 0 (6)

with blocksG̃i(U ; x(0)) , g(φ(ti, U, x(0)), µ(ti, U)). Eqs.
(5) - (6) define an mp-NLP, since it is an NLP inU param-
eterized by the initial state vectorx(0). We note that the
introduction of common modifications such as terminal con-
straints and infeasibility relaxations still gives an mp-NLP.
Assume the solution exists, and let it be denotedU∗(x(0)).
In the special case whenV andG are quadratic and linear,
respectively, in bothU andx(0), a solution can be found ex-
plicitly and exactly as a continuous PWL mappingU∗(x(0))
using mp-QP [4, 3].
Here we suggest to utilize an mp-QP algorithm to approxi-
mately solve the mp-NLP (5)-(6). In the mp-QP case, this
algorithm will iteratively build a polyhedral partition of the
state-space with an exact solution corresponding to a fixed
active set within each polyhedral critical region. This leads
to a PWL solutionU∗(x) since a fixed active set leads to
a solution that is linear inx, [2]. In the mp-NLP case we
keep the PWL structure of the solution, but in each poly-
hedral region we approximate the (exact) nonlinear solution
by a PWL approximate solution found by solving a mp-QP
constructed as a locally accurate quadratic approximation to
V and linear approximation toG. Under regularity assump-
tions onV andG, one may expect that the approximation
error and constraint violations will be small if each of the re-
gions are sufficiently small. We therefore suggest to analyze
the approximation error within each region and introduce a
sub-partitioning of some regions when needed in order to
keep the approximation error and constraint violations within
specified bounds.



3 Properties of the mp-NLP

For a givenx0 ∈ X the well known Karush-Kuhn-Tucker
(KKT) first-order conditions [17]

∇UL(U0;x0) = 0 (7)

diag(λ0)G(U0;x0) = 0 (8)
λ0 ≥ 0 (9)

G(U0;x0) ≤ 0 (10)

are necessary for a local minimumU0, with associated La-
grange multiplierλ0 and the Lagrangian defined as

L(U, λ; x) , V (U ; x) + λT G(U ; x) (11)

Consider the optimal active setA0 atx0, i.e. a set of indices
to active constraints in (10). The above conditions are suffi-
cient provided the following second order condition holds:

zT∇2
UUL(U0, λ0; x0)z > 0, for all z ∈ F − {0} (12)

withF being the set of all directions where it is not clear from
first order conditions if the cost will increase or decrease:

F = {z ∈ Rp | ∇UGA0(U0; x0)z ≥ 0,

∇UGi(U0;x0)z = 0, for all i with (λ0)i > 0} .(13)

The notationGA0 means the rows ofG with indices inA0.
The following result gives local regularity conditions for the
optimal solution, Lagrange multipliers and optimal cost as
functions ofx.
Assumption A1. V andG are twice continuously differen-
tiable in a neighborhood of(U0, x0).
Assumption A2. The sufficient conditions (7)-(10) and (12)
for a local minimum atU0 hold.
Assumption A3. Linear independence constraint qualifi-
cation (LICQ) holds, i.e. the active constraint gradients
∇UGA0(U0;x0) are linearly independent.
Assumption A4. Strict complementary slackness holds, i.e.
(λ0)A0 > 0.

Theorem 1 Consider the problem (5) - (6), and letx0 ∈ X
andU0 be given. If A1 - A3 holds, then

1. U0 is a local isolated minimum.

2. For x in a neighborhood ofx0, there exists a unique
continuous functionU∗(x) satisfyingU∗(x0) = U0
and the sufficient conditions for a local minimum.

3. Assume in addition A4 holds, and letx be in a neigh-
borhood ofx0. ThenU∗(x) is differentiable and the
associated Lagrange multipliersλ∗(x) exists, and are
unique and continuously differentiable. Finally, the set
of active constraints is unchanged, and the active con-
straint gradients are linearly independent atU∗(x).

¤
Parts 1 and 2 are due to [18], while part 3 is due to Theorem
3.2.2 in [7]. Related results for slightly different conditions,
and extensions that show the existence and computation of
directional derivatives of the solution with respect tox at x0
can be found in [7, 8, 19] and others. For the fixed active

setA0 the KKT conditions (7)-(8) reduces to the following
system of equations parameterized byx:

∇UV (U(x); x) +
∑

i∈A0

λi(x)∇UGi(U(x); x) = 0 (14)

GA0(U(x); x) = 0 (15)

The functionsU(x) andλ(x) implicitly defined by (14)-(15)
are optimal only for thosex where the active setA0 is opti-
mal. Assumingλ andU are well defined onX, we character-
ize the critical regionXA0 where the solution corresponding
to the fixed active setA0 is optimal:

XA0 , {x ∈ X | λ(x) ≥ 0, G(U(x); x) ≤ 0} (16)

There is a finite number of candidate active sets, so this re-
sult suggests a finite partition ofX with a piecewise solution
to the mp-NLP, similar to [2, 3] for mp-QPs. Although ex-
plicit exact solutions cannot be found in the general nonlinear
case, the above result indicates that it is meaningful to search
for a continuous approximation to the optimal solution as a
function ofx.

4 Local mp-QP approximation to mp-NLP
In this section we study how the cost function and constraints
can be locally approximated by mp-QP problems. Letx0 ∈
X be arbitrary and denote the corresponding optimal solution
U0 = U∗(x0). Taylor series expansions ofV andG about
the point(U0, x0) leads to the following locally approximate
mp-QP problem:

V0(U ; x) , 1
2
(U − U0)T H0(U − U0) (17)

+(D0 + F0(x− x0))(U − U0) + Y0(x; x0)

subject to

G0(U − U0) ≤ E0(x− x0) + T0 (18)

The cost and constraints are defined by the matrices

H0 , ∇2
UUV (U0; x0), F0 , ∇2

xUV (U0; x0)

D0 , ∇UV (U0; x0), G0 ,
( ∇U G̃(U0;x0)

I
−I

)

E0 ,
( −∇xG̃(U0; x0)

0
0

)
, T0 ,

( −G̃(U0;x0)
Umax − U0
U0 − Umin

)

Y0(x; x0) , V (U0;x0) +∇xV (U0; x0)(x− x0)
+ 1

2 (x− x0)T∇2
xxV (U0; x0)(x− x0)

Let the PWL solution to the mp-QP (17) - (18) be denoted
UQP (x) with associated Lagrange multipliersλQP (x). This
solution satisfies the following KKT conditions

H0 (UQP (x)− U0) + F0(x− x0)

+D0 + GT
0 λQP (x) = 0 (19)

diag(λQP (x)) (G0(UQP (x)− U0)
−E0(x− x0)− T0) = 0 (20)

λQP (x) ≥ 0 (21)

G0 (UQP (x)− U0)− E0(x− x0)− T0 ≤ 0 (22)



Consider the optimal active setA of the QP (17) - (18) at a
givenx ∈ X, and letG0,A andλQP,A denote the rows ofG0
andλQP , respectively, with indices inA. Eqs. (19) - (20)
define the following linear equations

(
H0 GT

0,A
G0,A 0

)(
UQP,A(x)− U0

λQP,A(x)

)
=

(
F0(x− x0) + D0

E0(x− x0) + T0

)
(23)

The following results is an extension of Theorem 2 in [4]
(whereH0 > 0 was assumed in addition to LICQ).
Assumption A5. For an optimal active setA, the matrix
G0,A has full row rank (LICQ) andZT

0,AH0Z0,A > 0, where
the columns ofZ0,A is a basis for null(G0,A).

Theorem 2 Consider the problem (17)-(18), and letX be a
polyhedral set withx0 ∈ X. If assumption A5 holds, then the
system of linear equations (23) has a unique solution and the
critical region where the solution is optimal is given by the
polyhedral set

X0,A , {x ∈ X | λQP,A(x) ≥ 0,

G0(UQP,A(x)− U0) ≤ E0(x− x0) + T0}
Hence,UQP (x) = UQP,A(x) and λQP (x) = λQP,A(x) if
x ∈ X0,A, and the solutionUQP is a continuous, PWL func-
tion ofx defined on a polyhedral partition ofX.

Proof. Non-singularity of the matrix on the left-hand-side of
(23) follows from standard 2nd order considerations such as
Lemma 16.1 in [17], due to Assumption A5. The rest of the
proof is similar to [4].
¤
Algorithms for solving such an mp-QP (with straightforward
modifications to account for the relaxed second-order condi-
tion A5) are given in [3, 4]. The following result compares
the primal and dual local QP solution with the global NLP
solution.

Theorem 3 Consider the problem (5)-(6). Letx0 ∈ X and
suppose there exists aU0 satisfying assumptions A1 - A4.
Then forx in a neighbourhood ofx0

UQP (x)− U∗(x) = O(||x− x0||22) (24)

λQP (x)− λ∗(x) = O(||x− x0||22) (25)

Proof. Let the neighborhood ofx0 under consideration be
restricted toX0,A0 , whereA0 is the optimal active set atx0.
The first KKT condition for the QP is

H0 (UQP (x)− U0) + F0(x− x0)

+(D0 + GT
0 λQP (x)

)
= 0 (26)

SinceU0 = U∗(x0) we haveU∗(x)− U0 = O(||x− x0||2),
and the first KKT condition (7) for the NLP can be rewritten
as follows using a Taylor series expansion

0 = ∇UV (U∗(x); x) +∇T
UG(U∗(x); x)λ∗(x) (27)

= D0 + H0(U∗(x)− U0) + F0(x− x0) + GT
0 λQP (x)

+GT
0 (λ∗(x)− λQP (x)) +O(||x− x0||22)

+O(||x− x0||2)(λ∗(x)− λQP (x)) (28)

Comparing (26) and (28) we get

H0 (UQP (x)− U∗(x)) + GT
0 (λQP (x)− λ∗(x)) =

O(||x− x0||22) (29)

From Theorem 1, part 3, it is known that the set of active
constraints is unchanged in a neighbourhood ofx0. Hence,
for the QP we have

G0 (UQP (x)− U0) = E0(x− x0) + T0 (30)

Whenx is in a neighbourhood ofx0, Taylor expanding the
NLP constraints gives

0 = G(U∗(x); x) (31)

= G0(U∗(x)− U0)− E0(x− x0)− T0 +O(||x− x0||22)
Comparing (30) and (31) it follows that

G0 (UQP (x)− U∗(x)) = O(||x− x0||2) (32)

and the result follows by inverting the system (29) and (32).
This system is indeed invertible: Due to assumption A4 it
follows that∇UGA0(U0;x0)z = 0 for all z ∈ F . Since
G0,A0 = ∇UGA0(U0; x0), it is clear thatF = null(G0,A0)
and assumptions A2 and A3 (and in particular eq. (12)) en-
sures that assumption A5 holds and non-singularity of

(
H0 GT

0
G0 0

)

follows from Lemma 16.1 in [17].
¤
Theorem 3 concerns only a small neighborhood ofx0 and is
therefore of limited computational use. We therefore proceed
by deriving some quantitative estimates and bounds on the
cost and solution errors, as well as the maximum constraint
violation. The solution error bound is defined as

ρ , max
x∈X0

|wT (µ(0, UQP (x))− µ(0, U∗(x)))| (33)

whereX0 ⊂ X is arbitrary, andw is a vector with positive
weights. Likewise, we define the cost error bound

ε , max
x∈X0

|V (UQP (x); x)− V ∗(x)| (34)

whereV ∗(x) , V (U∗(x); x). In addition, one may compute
the maximum constraint violation

δ , max
x∈X0

ωT G(UQP (x); x) (35)

whereω is a vector of non-negative weights. Typically, the
elements ofw corresponding to the first sample of the trajec-
tory will be positive, while the remaining will be zero since in
receding horizon control the primary interest is the first sam-
ple of the trajectory. The maximum constraint violation (35)
can be computed by solving an NLP, while the solution and
cost error bounds (33) and (34) are not easily computed with-
out introducing additional assumptions or allowing underes-
timation. A further problem is that they require computation
of the exactU∗(x) for severalx, which relies on the solution
of several NLPs and is therefore expensive. Obvious estima-
tion techniques forρ andε is to take the maximum over a
finite number of pointsX0, such as extreme points (vertices),
points generated by Monte Carlo methods, or combinations.
It should be emphasized that these methods can underesti-
mate the bounds.



5 Convexity
For the case whenV andG are convex functions, it is pos-
sible to derive a guaranteed bound onε from knowledge of
U∗(x) only at all the verticesV = {v1, v2, ..., vM} of the
bounded polyhedronX0, similar to [11] and chapter 9.2 of
[7]. Define the affine functionV (x) , V 0x + l0 as the solu-
tion to the following LP:

min
V 0,l0

(
V 0v + l0

)
(36)

subject to

V 0vi + l0 ≥ V ∗(vi), for all i ∈ {1, 2, ..., M} (37)

Likewise, define the convex piecewise affine function

V (x) , max
i∈{1,2,...,M}

(
V ∗(vi) +∇T V ∗(vi)(x− vi)

)
(38)

If V ∗ is not differentiable atvi, then∇V ∗(vi) is taken as any
sub-gradient ofV ∗ atvi:

Theorem 4 If V and G are jointly convex (inU and x) on
the bounded polyhedronX0, thenV (x) ≤ V ∗(x) ≤ V (x)
for all x ∈ X0.

Proof. It is shown in [20, 7] that the joint convexity ofV and
G implies convexity ofV ∗ on X0. Let x ∈ X0 be arbitrary,
and consider the convex combinationx =

∑
i αivi where

αi ≥ 0 satisfies
∑

i αi = 1:

V ∗(x) ≤
M∑

i=1

αiV
∗(vi) ≤

M∑

i=1

αi

(
V 0vi + l0

)
= V 0x + l0

The lower boundV follows from the convexity ofV ∗, since
V ∗(x) ≥ V ∗(v) +∇T V ∗(v)(x− v) for all v ∈ X0 [21].
¤
This immediately gives the following bounds on the cost
function error−ε1 ≤ V ∗(x)− V (UQP (x); x) ≤ ε2, where

ε1 = max
x∈X0

(V (UQP (x); x)− V (x)) (39)

ε2 = max
x∈X0

(
V (x)− V (UQP (x); x)

)
(40)

Hence, the cost error bound̃ε , max(ε1, ε2) ≥ ε can be
computed by solving two NLPs. It is straightforward to gen-
eralize both the upper linear and lower PWL bounds to more
accurate PWL bounds by solving an NLP at one or more ad-
ditional points inX0, [7]. A solution error bound can be
shown to exist as in chapter 9.7 of [7].

6 Algorithm
So far it has been established that under some regularity con-
ditions, local mp-QP solutions give accurate approximation
to the mp-NLP solution when restricted to a sufficiently small
subsetX0 ⊂ X. It remains to determine a sub-partition of
the polyhedral regionX such that the local mp-QP solutions
associated with each region are sufficiently accurate. We sug-
gest the following algorithm to approximate the mp-NLP so-
lution, based on recursive sub-partitioning guided by the ap-
proximation errors discussed above.

Algorithm 1 (approximate mp-NLP)
Step 1.Let X0 := X.
Step 2.Selectx0 as the Chebychev center ofX0, by solving
an LP.
Step 3. ComputeU0 = U∗(x0) by solving the NLP (5)-(6)
with x(0) = x0.
Step 4. Compute the local mp-QP problem (17) - (18) at
(U0, x0).
Step 5.Estimate the approximation errorsε, ρ andδ onX0.

Step 6.If ε > ε, ρ > ρ, or δ > δ, then sub-partitionX0 into
polyhedral regions.
Step 7. Select a newX0 from the partition. If no further
sub-partitioning is needed, go to step 8. Otherwise, repeat
Steps 2-7 until the tolerancesε, ρ andδ are respected in all
polyhedral regions in the partition ofX.
Step 8. For all sub-partitionsX0, solve the mp-QP (17) -
(18) using the mp-QP solver [3].
¤
Computation of the approximation errors in Step 5 are car-
ried out based on the results in section 5 if the cost function
and constraints are known to be convex. If not, we suggest to
estimate error bounds by solving NLPs at a number of points
in X0, typically the vertices and possibly other points. If the
convexity assumption does not hold, this seems to be a fairly
robust strategy. The sub-partitioning in Step 6 is based on a
heuristic criterion where the error at the vertices are used to
select one axis-orthogonal hyperplane to splitX0. The hy-
perplane is selected such that the error at the vertices (before
splitting) across the hyperplane is maximum.

7 Example: Compressor surge control

Consider the following 2nd-order compressor model [22, 23]
with x1 being normalized mass flow,x2 normalized pressure
andu normalized mass flow through a close coupled valve in
series with the compressor

ẋ1 = B (Ψe(x1)− x2 − u) (41)

ẋ2 =
1
B

(x1 − Φ(x2)) (42)

The following compressor and valve characteristics are used

Ψe(x1) = ψc0 + H

(
1 + 1.5

(x1

W
− 1

)
− 0.5

(x1

W
− 1

)3
)

Φ(x2) = γsign(x2)
√
|x2|

with γ = 0.5, B = 1, H = 0.18, ψc0 = 0.3 andW =
0.25. The control objective is to avoid surge, i.e. stabilize the
system. This may be formulated as

l(x, u) = α(x− x∗)T (x− x∗) + κu2

S(x) = Rv2 + β(x− x∗)T (x− x∗)

with α, β, κ, ρ ≥ 0 and the setpointx∗1 = 0.40, x∗2 = 0.60
corresponds to an unstable equilibrium point. We have cho-
senα = 1, β = 0, andκ = 0.08. The horizon is chosen as
T = 12, which is split intoN = p = 15 equal-sized inter-
vals, leading to a piecewise constant control input parameter-
izaton. Valve capacity requires the constraint0 ≤ u(t) ≤ 0.3
to hold, and the pressure constraintx2 ≥ 0.4−v avoids oper-
ation too far left of the operating point. The variablev ≥ 0 is
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Figure 1: State space partition (top), and after reduction (bottom).

a slack variable introduced in order to avoid infeasibility and
R = 8 is a large weight. Numerical analysis of the cost func-
tion shows that it is non-convex. It should be remarked that
the constraints onu andv are linear, such that any mp-QP
solution is feasible for the mp-NLP. The boundsε andρ are
estimates by computing the errors at the vertices only, and the
tolerancesε = 0.5 andρ = 0.03 were applied. The mp-NLP
contains 16 free variables, 47 constraints and 2 parameters. It
is solved in 320 sec. using MATLAB with the NAG Founda-
tion Toolbox on a 1 GHz Pentium III. The partition contains
379 regions, resulting from 45 mp-QPs, cf. Figure 1. This
can be reduced to 101 polyhedral regions without loss of ac-
curacy in a postprocessing step, where regions with the same
solution at the first sample are joined whenever their union
remains polyhedral, as in [4]. The computed approximate
PWL feedback is shown in Figure 2, together with the exact
feedback computed by solving the NLP on a dense grid. The
corresponding optimal costs are shown in Figure 3, and sim-
ulation results are shown in Figure 4, where the controller is
switched on aftert = 20. We note that it quickly stabilizes
the deep surge oscillations. Euler integration with step size
0.02 is applied to solve the ODE.
By generating a search tree using the method of [24], the
PWL mapping with 379 regions can be represented as a bi-
nary search tree with 329 nodes, of depth 9. Real-time evalu-
ation of the controller therefore requires 49 arithmetic opera-
tions, in the worst case, and 1367 numbers needs to be stored
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Figure 2: Piecewise linear approximate feedback control law (top)
and exact feedback control law (bottom).

in real-time computer memory.

8 Conclusions

An mp-NLP algorithm has been proposed and implemented.
Guaranteed properties have been established when the prob-
lem is convex, but quite often, dynamic optimization prob-
lems are not convex (or at least cannot be proven to be con-
vex). To get a robust algorithm that may also work well when
convexity is violated, the partition and termination criteria
are based on combining the convexity theory with heuristics.
The algorithm is shown to work satisfactory on a compressor
surge control simulation example.
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