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A numerical algorithm for approximate multi-parametric
nonlinear programming is developed. It allows approximate
solutions to nonlinear optimization problems to be computed
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with given initial conditionz(0) € X C R™. The input sig-
nalu[0,T] is assumed to be piecewise constant and parame-
terized by a vectot/ € R? such thatu(t) = u(t,U) € R" is
piecewise continuous. The solution to (4) is assumed in the

as explicit piecewise linear functions of the problem param-form z(¢) = ¢(t, U, 2(0)) for ¢ € [0, 7] and some piecewise
eters. In control applications such as nonlinear constraineccontinuous function. Relaxing the inequality constraints
model predictive control this allows efficient online imple- (3) to hold only at\ time instants{t:, ¢, ..., tx} C [0, 77,

mentation in terms of an explicit piecewise linear state feed-
back without any real-time optimization.

1 Introduction
Exact solutions to multi-parametric quadratic and linear pro-

grams (mp-QP/mp-LP) can be found using the methods of

e.g. [1, 2, 3]. These recently developed algorithms al-
lows the off-line computation of explicit piecewise linear

(PWL) state feedback control laws for linearly constrained
linear/quadratic optimal control problems. This facilitates
efficient real-time implementation of constrained optimal

feedback control strategies such as model predictive contro
(MPC) without the use of real-time optimization, see also
[4,5, 6]. MPC can be implemented on low-cost hardware and
with low software complexity in embedded systems. This
opens new application areas for MPC, which has tradition-
ally been restricted to slow process plants.

For general multi-parametric nonlinear programs (mp-NLPS)

one cannot expect to find exact solutions. There is a large

body of theory that develops local regularity conditions and
local sensitivity results [7, 8], and algorithms for large param-
eter variations are derived for single-parametric problems [9].
Here we propose an approximate mp-NLP algorithm utiliz-
ing NLP and mp-QP algorithms to solve local sub-problems,
with applications to nonlinear constrained MPC problems
in mind. Approximate mp-QP methods with application to

linear constrained MPC problems have been suggested b
[10, 11, 12]. Related function approximation methods for
non-linear optimal control are described in [13, 14, 15].

2 Problem formulation
Consider the nonlinear dynamic optimization problem

A

T
J(u[0,T], [0, T]) /0 Ha(t), u(t), )dt + S(x(T), T)

1)

subject to the inequality constraints foe [0, T']
Umin S u(t) S Umax (2)
g(z(t),u®)) < 0 3)

and the ordinary differential equation (ODE) given by

4

we can rewrite the optimization problem in the following
standard parametric form (direct single shooting, e.g. [16])
where the ODE constraint (4) has been eliminated by substi-
tuting its solutiong into the cost and constraints; minimize
with respect tdJ the cost

T
V(U (0) 2 A (8, U, 2(0)), ut, U), t)dt
+S(o(T,U, 2(0)), T)  (5)
kubject to
GU;zx
G(U;z(0)) = ( g(nggg)z) ) < 0 (6)

with blocksG; (U; (0)) £ g(¢(t;, U, z(0)), u(t;, U)). Egs.
(5) - (6) define an mp-NLP, since it is an NLP ih param-
eterized by the initial state vectar(0). We note that the
introduction of common modifications such as terminal con-
straints and infeasibility relaxations still gives an mp-NLP.
Assume the solution exists, and let it be dendt&qx(0)).
In the special case wheéli and G are quadratic and linear,
respectively, in botfi/ andz(0), a solution can be found ex-
licitly and exactly as a continuous PWL mappifig(z(0))
using mp-QP [4, 3].
Here we suggest to utilize an mp-QP algorithm to approxi-
mately solve the mp-NLP (5)-(6). In the mp-QP case, this
algorithm will iteratively build a polyhedral partition of the
state-space with an exact solution corresponding to a fixed
active set within each polyhedral critical region. This leads
to a PWL solutionU*(z) since a fixed active set leads to
a solution that is linear irx, [2]. In the mp-NLP case we
keep the PWL structure of the solution, but in each poly-
hedral region we approximate the (exact) nonlinear solution
by a PWL approximate solution found by solving a mp-QP
constructed as a locally accurate quadratic approximation to
V and linear approximation t&'. Under regularity assump-
tions onV and G, one may expect that the approximation
error and constraint violations will be small if each of the re-
gions are sufficiently small. We therefore suggest to analyze
the approximation error within each region and introduce a
sub-partitioning of some regions when needed in order to
keep the approximation error and constraint violations within
specified bounds.



3 Properties of the mp-NLP

For a givenzy € X the well known Karush-Kuhn-Tucker
(KKT) first-order conditions [17]

VuL(Up;zg) = 0 (7)
diag(Ao)G(Uo;z9) = 0 (8)
A o> 0 9)

are necessary for a local minimutfy, with associated La-
grange multiplier\y and the Lagrangian defined as

LU X 2) & V(U;2)+ M GU;x) (11)

Consider the optimal active sty atz, i.e. a set of indices

to active constraints in (10). The above conditions are suffi-

cient provided the following second order condition holds:

2TV2,, LUy, Mo; 20)z > 0, forallz ¢ F— {0} (12)
with F being the set of all directions where it is not clear from
first order conditions if the cost will increase or decrease:

F {z € R? | VuG 4, (Up; o)z > 0,

VuGi(Uo; wo)z = 0, for all i with (X); > 0} (13)

The notationG 4, means the rows off with indices in.A4,.
The following result gives local regularity conditions for the
optimal solution, Lagrange multipliers and optimal cost as
functions ofx.

Assumption Al. V andG are twice continuously differen-
tiable in a neighborhood dly, x¢).

Assumption A2. The sufficient conditions (7)-(10) and (12)
for a local minimum at/; hold.

Assumption A3. Linear independence constraint qualifi-
cation (LICQ) holds, i.e. the active constraint gradients
VuGa, (Up; o) are linearly independent.

Assumption A4. Strict complementary slackness holds, i.e.
()‘O)Ao > 0.

Theorem 1 Consider the problem (5) - (6), and leg € X
andUj be given. If Al - A3 holds, then

1. Uy is a local isolated minimum.

2. For z in a neighborhood of:, there exists a unique
continuous functiorV*(z) satisfyingU*(z9) = Up
and the sufficient conditions for a local minimum.

3. Assume in addition A4 holds, and lete in a neigh-
borhood ofzy. ThenU*(z) is differentiable and the
associated Lagrange multipliers® () exists, and are
unique and continuously differentiable. Finally, the set

of active constraints is unchanged, and the active con-

straint gradients are linearly independent@t (x).

O

Parts 1 and 2 are due to [18], while part 3 is due to Theorem

3.2.2in [7]. Related results for slightly different conditions,

and extensions that show the existence and computation of

directional derivatives of the solution with respectitat zq

can be found in [7, 8, 19] and others. For the fixed active

set Ay the KKT conditions (7)-(8) reduces to the following
system of equations parameterizediby

VoV(U(x)iz)+ > Ni(@)VuGi(U(x);z) =0
i€Ao

(14)

Ga,(U(x);z) =0 (15)
The functions[](a? andX(x) implicitly defined by (14)-(15)
are optimal only for those where the active setl is opti-
mal. Assuming\ andU are well defined oX, we character-
ize the critical regiont’4, where the solution corresponding
to the fixed active setly is optimal:

X, 2 {z € X |Nz) >0, GU(x);x) <0} (16)
There is a finite number of candidate active sets, so this re-
sult suggests a finite partition &f with a piecewise solution
to the mp-NLP, similar to [2, 3] for mp-QPs. Although ex-
plicit exact solutions cannot be found in the general nonlinear
case, the above result indicates that it is meaningful to search
for a continuous approximation to the optimal solution as a
function ofz.

4 Local mp-QP approximation to mp-NLP

In this section we study how the cost function and constraints
can be locally approximated by mp-QP problems. Lgte

X be arbitrary and denote the corresponding optimal solution
Uy = U*(zp). Taylor series expansions &f and G about

the point(Uy, =) leads to the following locally approximate
mp-QP problem:

A

Vo(U; z)

2 %(U — Uo)"Ho(U — Uy) (7)
+(Do + Fo(x — x0)) (U = Up) + Yo(x; 20)
subject to

Go(U — Up)

< Ey(x —x0) + To (18)

Do £ VyV(Uo; o), Go = <

-
)

—G(Uo;xo)

HO e V%]UV(UO;.TO), F() e VETUV(UQ;I'())
( Umax — U()
Ui min

Vv G(Uo; 7o)
( 0—

The cost and constraints are defined by the matrices
1
—I
—V.G(Uo; xo)
0 0=
0
Yo(l‘; CL‘()) £ V(UO; 1‘0) + VIV(U(), xo)(w — .’[]0)
—l—%(ﬂ? —10)TV2, V(Up; o) (x — 20)

)

Let the PWL solution to the mp-QP (17) - (18) be denoted
Uqp(z) with associated Lagrange multipliekg (). This
s&)ution satisfies the following KKT conditions

Hy (Ugp(x) — Up) + Fo(z — x0)

+Do+Girgp(z) = 0 (19)
diagA\qpr(z)) (Go(Ugp(z) — Vo)
—Eo(x —x0) —Tp) = 0 (20)
Agr(z) > 0 (21)
Go (UQP(x) —Uo) —Eo(l‘—l‘o) —TO S 0 (22)



Consider the optimal active sgt of the QP (17) - (18) ata Comparing (26) and (28) we get

givenz € X, and letGy,_4 and\gp, 4 denote the rows afy

and\gp, respectlvely with |n§ces id. Egs. (19) - (20) Hy (Ugp(z) — U () + GE (Agp(z) — A\*(x) =

deflne the following linear equations Oz — o)1) (29)
2

Hy G4 Ugra(z) —=Uo \ _ From Theorem 1, part 3, it is known that the set of active
Go,a Aqp.A(T) constraints is unchanged in a neighbourhood of Hence,
Fo(z — 20) + D for the QP we have
0 — 40 0
( Eo(a — z0) + Ty ) (23) Go(Ugp(x) —Us) = Eolz—wo)+ Ty (30)

The following results is an extension of Theorem 2 in [4] Whenz is in a neighbourhood af, Taylor expanding the
(whereH, > 0 was assumed in addition to LICQ). NLP constraints gives
Assumption A5. For an optimal active setl, the matrix 0 = GU*(x);z) (31)

Gy, 4 has full row rank (LICQ) andZOT’AHOZo’A > 0, where —  Go(U*(x) — Up) — Eolx — w0) — To + O(||z — z0|12)

the columns o, 4 is a basis for nullGy, ).
Comparing (30) and (31) it follows that

Theorem 2 Consider the problem (17)-(18), and &t be a . 9
polyhedral set with:o € X . If assumption A5 holds, then the Go (Ugp(z) —U"(z)) = O(llz —z0l|) (32)

system of linear equations (23) has a unique solution and the, and the result follows by inverting the svstem (29) and (32
critical region where the solution is optimal is given by the This system is indeed ?/nvertlbleg Due >t/o aSSl(JmF),UOH ,&4 |)t
polyhedral set follows that VG 4, (Uo; z0)z = 0 for all z € F. Since

a Go, 4, = VuGa,(Uo; xo), itis clear thatF = null(Go 4,)
Xoa = {zeX|Agpalz) =0, and gssumptmnos A2 and A3 (and in particular eq. (12)) en-
Go(Ugp, A( ) = Uo) < Eo(x — x0) + To} sures that assumption A5 holds and non-singularity of
Hence,Ugp(z ? )and Agp(x) = Agp.a(z) if Hy GT
z € X4, and the o] utlorU p is a continuous, PWL func- Go 0

tion of z defined on a polyhedral partition of.

follows from Lemma 16.1 in [17].
Proof. Non-singularity of the matrix on the left-hand-side of
(23) follows from standard 2nd order considerations such a

Lemma 16.1 in [17], due to Assumption A5. The rest of theSTheorem 3 concerns only a small neighborhood oéind is
proof is similar to [4]. therefore of limited computational use. We therefore proceed

by deriving some quantitative estimates and bounds on the
U cost and solution errors, as well as the maximum constraint
Algorithms for solving such an mp-QP (with straightforward violation. The solution error bound is defined as
modifications to account for the relaxed second-order condi- N T .
tion A5) are given in [3, 4]. The following result compares p = max |w” (u(0, Ugp(2)) — p(0,U"(2)))] (33)
the primal and dual local QP solution with the global NLP rERo
solution. where X, C X is arbitrary, andv is a vector with positive
weights. Likewise, we define the cost error bound
Theorem 3 Consider the problem (5)-(6). Let € X and
suppose there exists &, satisfying assumptions Al - A4. e £ max |V(Ugp(x);z) — V*(z)| (34)
Then forz in a neighbourhood af 2€Xo

_ — — )2 whereV*(x) £ V(U*(z); z). In addition, one may compute
U/\Qp(x) Z*(x) g(”x x0||§) (zg) the maximum constraint violation
xXr)— X = r— X
Proof. Let the neighborhood aof, under consideration be reto
restricted taXy 4, WhereAy is the optimal active set afy. wherew is a vector of non-negative weights. Typically, the
The first KKT condition for the QP is elements ofv corresponding to the first sample of the trajec-
tory will be positive, while the remaining will be zero since in
Ho (Uqp(x) — Uo) + Fo(x — x0) receding horizon control the primary interest is the first sam-
D T _ 2 ple of the trajectory. The maximum constraint violation (35)
+(Do + Go )\QP(x)) 0 (26) can be computed by solving an NLP, while the solution and
Sincely = U*(x0) we havel* (z) — Uy = O(||z — zo||2), cost error bounds (33) and (34) are not easily computed with-
and the first KKT condition (7) for the NLP can be rewritten Ut introducing additional assumptions or allowing underes-
as follows using a Taylor series expansion timation. A further problem is that they require computation
of the exacU™* (z) for severalz, which relies on the solution
0 = VyV(U*(2);z) + VEGU* (z);2)\ (z) 27) of several NLPs and is therefore expensive. Obvious estima-

tion techniques fop ande is to take the maximum over a
= Do+ Ho(U*(x) — Up) + Fo(x — x0) + G Agp () finite number of points{y, such as extreme points (vertices),
T\ % 2 points generated by Monte Carlo methods, or combinations.
+Go (N (2) = Agpr()) + O([|lz — 20l[3) It should be emphasized that these methods can underesti-
+O(||lz — zol|2) (A" (z) — Agr(z)) (28)  mate the bounds.



5 Convexity

For the case whel andG are convex functions, it is pos-
sible to derive a guaranteed bound ©from knowledge of
U*(x) only at all the verticed) = {v1,va, ...,vp} of the
bounded polyhedroiX, similar to [11] and chapter 9.2 of

[7]. Define the affine functioh’ (z) £ Vyz + [y as the solu-
tion to the following LP:

in (Vov+1
i o)

(36)

subject to

Vovi + 1o > V*(v;), foralli € {1,2,..., M} (37)

Likewise, define the convex piecewise affine function

V(x) = (V*(vi) + VIV*(vi) (& — vi))  (38)

max
i€{1,2,...,M}

If V* is not differentiable at;, thenVV*(v; ) is taken as any
sub-gradient o¥/* atw;:

Theorem 4 If V and G are jointly convex (inJ and x) on
the bounded polyhedroX, thenV (z) < V*(z) < V(x)
forall x € X,.

Proof. It is shown in [20, 7] that the joint convexity &f and
G implies convexity of’* on X,. Letx € X, be arbitrary,
and consider the convex combinatien= } . a;v; where

a; > 0 satisfiesy |, o; = 1:

«; (Vo’l}i + Zo) = V()(E + Zo

-

M
Vi (@) <) eV (i) <
i=1

i=1

The lower bound/ follows from the convexity of*, since
V*(z) > V*(v) + VIV*(v)(x —v) for allv € X, [21].
O

This immediately gives the following bounds on the cost
function error—e; < V*(z) — V(Ugp(z); x) < €2, Where

€1 (39)

51612}3(() (V(Ugp(x);z) = V(z))

€2 max (V(z) = V(Uqp(z);x)) (40)

Hence, the cost error bourid 2 max(e;,£2) > e can be
computed by solving two NLPs. It is straightforward to gen-

Algorithm 1 (approximate mp-NLP)
Step 1.Let X := X.

Step 2.Selectz as the Chebychev center &), by solving
an LP.

Step 3. Computely = U*(xq) by solving the NLP (5)-(6)
with z(0) = xo.

Step 4. Compute the local mp-QP problem (17) - (18) at
(UO7 IO)'

Step 5.Estimate the approximation errarsp andd on Xj.

Step 6.If ¢ > &, p > p, or§ > §, then sub-partitionY,, into
polyhedral regions.

Step 7. Select a newX, from the partition. If no further
sub-partitioning is needed, go to step 8. Otherwise, repeat

Steps 2-7 until the tolerancesp ando are respected in all
polyhedral regions in the partition of .

Step 8. For all sub-partitionsX,, solve the mp-QP (17) -
(18) using the mp-QP solver [3].
O

Computation of the approximation errors in Step 5 are car-
ried out based on the results in section 5 if the cost function
and constraints are known to be convex. If not, we suggest to
estimate error bounds by solving NLPs at a number of points
in Xy, typically the vertices and possibly other points. If the
convexity assumption does not hold, this seems to be a fairly
robust strategy. The sub-partitioning in Step 6 is based on a
heuristic criterion where the error at the vertices are used to
select one axis-orthogonal hyperplane to sflit The hy-
perplane is selected such that the error at the vertices (before
splitting) across the hyperplane is maximum.

7 Example: Compressor surge control

Consider the following 2nd-order compressor model [22, 23]
with 21 being normalized mass flowp normalized pressure
andu normalized mass flow through a close coupled valve in
series with the compressor

j?l = B (‘I’e(.’)&‘l) — T9 — u) (41)
li?g = é (171 — (b(l’g)) (42)

The following compressor and valve characteristics are used

U (21) = teo+ H (1 +15 (% _ 1) —05 (% — 1)3)
D) = sign(zz)y/ |22

eralize both the upper linear and lower PWL bounds to moreWith v = 0.5, B = 1, H = 0.18, ¢ = 0.3 andW =
accurate PWL bounds by solving an NLP at one or more ad-0-25. The control objective is to avoid surge, i.e. stabilize the

ditional points in Xy, [7]. A solution error bound can be
shown to exist as in chapter 9.7 of [7].

6 Algorithm

system. This may be formulated as

az — 29 (x — 2%) + ku?
Rv? + fB(x — )T (z — )

So far it has been established that under some regularity con-
ditions, local mp-QP solutions give accurate approximationwith o, 3, x, p > 0 and the setpoint} = 0.40, x5 = 0.60

to the mp-NLP solution when restricted to a sufficiently small
subsetX, C X. It remains to determine a sub-partition of
the polyhedral regiotX such that the local mp-QP solutions

corresponds to an unstable equilibrium point. We have cho-
sena = 1, = 0, andx = 0.08. The horizon is chosen as
T = 12, which is split intoN = p = 15 equal-sized inter-

associated with each region are sufficiently accurate. We sugvals, leading to a piecewise constant control input parameter-

gest the following algorithm to approximate the mp-NLP so-

izaton. Valve capacity requires the constra@int u(t) < 0.3

lution, based on recursive sub-partitioning guided by the ap-to hold, and the pressure constraigt> 0.4 — v avoids oper-

proximation errors discussed above.

ation too far left of the operating point. The variable> 0 is
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in real-time computer memory.
a slack variable introduced in order to avoid infeasibility and
R = 8is alarge weight. Numerical analysis of the cost func- 8 Conclusions

tion shows that it is non-convex. It should be remarked that . .
the constraints om andv are linear, such that any mp-QP An mp-NLP algorithm has been proposed and implemented.

solution is feasible for the mp-NLP. The boundandp are’  Guaranteed properties have been established when the prob-
estimates by computing the errors at the vertices only, and thdeM is convex, but quite often, dynamic optimization prob-
tolerances = 0.5 andp = 0.03 were applied. The mp-NLP  1€ms are not convex (or at least cannot be proven to be con-
contains 16 free variables, 47 constraints and 2 parameters. f€X). To getarobustalgorithm that may also work well when
is solved in 320 sec. using MATLAB with the NAG Founda- CONVexity is violated, the partition and termination criteria
tion Toolbox on a 1 GHz Pentium Ill. The partition contains &reé based on combining the convexity theory with heuristics.
379 regions, resulting from 45 mp-QPs, cf. Figure 1. This e algorithm is shown to work satisfactory on a compressor
can be reduced to 101 polyhedral regions without loss of ac-SUrge control simulation example.

curacy in a postprocessing step, where regions with the samécknowledgements.This work was in part sponsored by the
solution at the first sample are joined whenever their unionEuropean Commission through the RTN contract MAC.
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