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Abstract

We present an algorithm for generating a binary search tree that allows efficient evaluation
of piecewise affine (PWA) functions defined on a polyhedral partitioning. This is useful for
PWA control approaches, such as explicit model predictive control (MPC), as it allows the
controller to be implemented online with small computational effort. The computation time
is logarithmic in the number of regions in the PWA function.

1 Introduction

Piecewise Affine (PWA) controllers arise naturally in various applications, e.g in
the presence of constraints. The simplicity of PWA systems also make them attrac-
tive as an approximation to non-linear systems. In this paper we address evaluation
of a PWA function. This may seem trivial, but when the function is complex, a
straightforward implementation is computationally expensive. The main motiva-
tion behind this work, is recent developments within explicit solutions of Model
Predictive Control (MPC), in which the solutions are complex PWA state feedback
laws. In (Bemporadet al., 2002) it was recognized that the linear MPC problem
can be formulated as a multi-parametric quadratic program (mp-QP) and solved
explicitly, with a PWA solution. An algorithm to solve the mp-QP is also provided,
however, a more efficient algorithm is developed in (Tøndelet al., 2001). An alter-
native solution strategy is given in (Johansenet al., 2000), where pre-determination
of a small set of sampling instants where the active set is allowed to change gives
a suboptimal solution. Sub-optimality of mp-QP is also introduced in (Bemporad
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and Filippi, Conditionally accepted for publication with minor revisions) by adding
small slacks to the optimality conditions, and in (Johansen and Grancharova, 2002),
by imposing an orthogonal structure to the state space partitioning. In (Bemporad
et al., 2000a) MPC problems with���-norms are formulated as multi-parametric
linear programs (mp-LP) and solved explicitly, while extensions to hybrid systems
using multi-parametric mixed-integer LP (mp-MILP), can be found in (Bemporad
et al., 2000b), and explicit robust MPC is treated in (Bemporadet al., 2001a). All
of these approaches lead to PWA state feedback laws. Evaluation of PWA func-
tions is also of interest with other PWA control structures than explicit MPC con-
trol (see for example (Sontag, 1981; Rantzer and Johansson, 2000; Hassibi and
Boyd, 1998; Slupphaug and Foss, 1999)). The most immediate way of evaluating a
PWA function is to store the linear inequalities representing every polyhedral region
of the PWA function defining the state feedback law, and do a sequential search (see
Algorithm 1) through these to find the region where the state belongs. The use of
neighboring relations between the regions do not necessarily reduce the worst case
computational complexity in a practical system, since there may be large changes
in the state between any consecutive samples. Reasons for this may include sud-
den setpoint changes, mode switches, integrator resetting, disturbances and slow
sampling. Nevertheless, this is similar to ”warm start” in numerical optimization
and will usually give some reduction in average computation effort. For the case
of exact solutions to the mp-QP and mp-LP problems, the authors of (Borrelliet
al., 2001b) propose a more efficient method regarding both search time and storage
by exploiting properties of the value function. This method is however not feasible
to more general PWA function evaluation, and is still fairly time consuming since
it requires a sequential search. The evaluation of a PWA function is similar to the
point location problem (Snoeyink, 1997; Goodrich and Ramaiyer, 1999) which has
been subject to some research in the computational geometry field. However, this
research has been mainly focused on planar problems, and also a few treatments
of problems in three dimensions. These solutions are not suitable for the problems
faced when evaluating the PWA solutions to control problems, which may have
higher dimensions. The off-line mp-QP algorithm of (Bemporadet al., 2002) has
the property that a binary tree structure could be generated while the mp-QP prob-
lem is solved, but it is not obvious how to modify the algorithm such that the search
tree will be balanced. In this paper we present an efficient data structure for the rep-
resentation of PWA functions, in an effort to minimize the time needed to evaluate
the function. We also seek to minimize the storage required by this data structure,
although this is considered of secondary importance. The proposed method is gen-
eral, in the sense that it does not have special requirements on the PWA function.
The proposed method gives evaluation times which arelogarithmic in the number
of regions in the PWA function, while the storage required by the data structure
is polynomial in the number of regions. It can also be used for evaluating piece-
wise quadratic as well as piecewise nonlinear functions, as long as the functions
are defined on a polyhedral partition.
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2 Explicit Constrained Linear MPC

Below we give a short summary of linear MPC problems and their explicit solu-
tions. Consider the linear system

���� � ��� ���� (1)
�� � ���

where�� � �
� is the state variable,�� � �

� is the input variable,� � �
��� ,

� � �
��� and����� is a controllable pair. The output and the control input are

subject to the bounds

���� � �� � ����� ���� � �� � ����� (2)

where���� � ���� and���� � ����. For the current��, MPC solves the optimiza-
tion problem
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Additionally we may require the terminal constraint


���	 � � (10)

to be satisfied. For� � 	, ����� � ���� � , � � �� � �, � � �� � � and� � �.
For � � � and� � �, ����� � �����. For ease of notation, we may in the sequel
skip the index�, and use� for �� and� for ��. These problems can be reformulated
as the following multi-parametric programs:

(1) mp-QP (� � 	):

���
�

���� � ���� (11)

���� �� � � � ��� (12)

� Although this does not strictly define a norm, we choose this description for ease of
notation.
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where� � 
��� � � � � �
�
������

� , see (Bemporadet al., 2002) for details.
(2) mp-LP (� � � or � � �):

���
�

��� (13)

���� �� � � � ��� (14)

where� � 
��� � � � � � �
�
����� �� �� and � is a vector of slack variables, see

(Bemporadet al., 2000a) for details.
(3) Robust MPC (� � �). In (Bemporadet al., 2001a) the authors show that

when introducing uncertainty to the linear model (1), that is

���� � ��������� ���������� � � ���� (15)

where ��� and���� are unknown input disturbances and parametric uncer-
tainties, respectively, a min-max optimization problem analogous to (3)-(9)
can be solved by� mp-LPs.

(4) mp-MILP (� � � or � � �): Here the linear model (1) is replaced by the
piecewise affine model.

���� � ���� ����� � !�� if

�
�� ��
��

�
�� � ��� (16)

where!� � �
� are constant vectors and���	 is a polyhedral partition of

the state+input space. The problem can be reformulated as a mp-MILP, see
(Bemporadet al., 2000b).

Definition 1 A function� � " 
 �
� , is piecewise affine (PWA) if" � ������"� �

�
� , where"� are convex polyhedral regions and���� � � �� � 
�� �� � "�.

The solutions to the problems above together with the other problems mentioned
in the introduction are PWA functions, which gives the control input (the first#
elements of the optimal� ) as an explicit function of�. We will in the next sec-
tion present an efficient data structure which allows efficient evaluation of PWA
functions.

3 On-line Search Tree

When a PWA controller is executed, the problem is to decide which polyhedral
region"� the current state�� belongs to, and then compute the control input using
the corresponding affine control law. The most direct way of doing this is by the
following sequential search through the polyhedral regions of the partition.
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Algorithm 1 (Sequential search)

1 $ 
 �
2 while� �� "� and$ � %�
3 $ 
 $� �
4 end (while)
5 if $ � %� � �, then� �� ", (problem infeasible), terminate.
6 evaluate the control input,���� � � �� � 
� �

In the worst case Algorithm 1 checks every region (and every hyperplane) in the
partition. We want a method to find the region to which a given� belongs by
evaluating as few hyperplanes as possible. An efficient way to exploit the con-
vexity of polyhedral sets is to build off-line a binary search tree (for on-line use)
where at each level one linear inequality is evaluated. Consider the set of polyhedra
"�� "
� ���� "�� , and the corresponding set of affine functions��� �
� ���� �� repre-
senting affine control laws. Note that& � %� since several regions can have the
same control law. Let all unique hyperplanes defining the polyhedra in the parti-
tion be denoted by'�� � � (� for ) � �� 	� ���� 
, and define*���� � '�� � � (�.
Let the index representation of a polyhedron� denote a combination of indexes
from this set combined with the sign of*�, e.g.� � ���� 
�� ��	 would mean
that*���� � �, *���� � � and*���� � �. Such a set obviously defines a polyhe-
dron in the state space,��� �. We can further define the set of polyhedral regions
corresponding to� as the index set��� � � �$�"� � ��� � is full-dimensional	.
For a set� of polyhedra, we can also define an index set of corresponding affine
functions���� � �
��� corresponds to"�� $ � �	.
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j2
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I5={6}
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Fig. 1. Search tree generated from partition with n� � � and� � �
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The idea is to construct a binary search tree such that for a given� � ", at each
node we will evaluate one affine function*���� and test its sign. Based on the
sign we select the left or right sub-tree. Traversing the tree from the root to a leaf
node, one will end up with a leaf node giving a unique affine control law��. The
main challenge is to design a tree of minimum depth such that we minimize the
number of hyperplanes to be evaluated to determine the solution. Less important,
but also relevant, is the desire to keep the total number of nodes in the tree at a
minimum, as this would decrease the on-line memory requirements. Each node
of the tree will be denoted by��, and we will use a list� to keep the indices
of the nodes which are currently unexplored. An unexplored non-leaf node�� will
consist of�������, where�� is the index representation of the polyhedron obtained
by traversing the tree from the root node to�� and�� � �����. An explored non-
leaf node will contain an index)� to a hyperplane, while a leaf node will contain
an affine control law,��. See Figure 1 for an example of a simple search tree. We
will use the notation ’�’ for statements which should be repeated for both ’�’
and ’�’. Let � � � denote the number of elements in a set. Note that��� � )�� �
���� ����)���, and that the difference between these two sets can be characterized
by the following lemma:

Lemma 1 If $ � ��� � � ��)�� but $ �� ��� � )��, then"� is split into two full-
dimensional polyhedra by hyperplane), i.e. $ � ��� � � ��)�� � ��)��. The same
result holds when)� and)� are interchanged.

Proof: Since$ �� ��� �)�� then��� �)���"� is not full-dimensional. But since
$ � ��� � and��� � � ��� � )�� � ��� � )�� we have that��� � )�� � "�

is full-dimensional, and so is��)�� �"�, which implies$ � ��)�� and completes
the proof. � When exploring a node of the tree, the main goal is to reduce the
number of remaining control laws as much as possible from the current to the next
level of the tree. More precisely, for a node�� � �������, we want to select
the hyperplane)� as������� ���������� ��� ������ ���, where��� � ���� � )��.
This does however require the computation of��� for every). Lemma 1 provides a
computationally efficient approximation of��� as����� � ��)��. One can further
get the exact��� by for each$ � ����� � ��)�� � ��)�� solving the two LPs

���
����

�*���� (17)

As the approximation can be used to select a few candidate hyperplanes, there
is only a small number of LPs which have to be solved. We can now present an
algorithm to build a search tree:

Algorithm 2 (Build search tree)

1 Compute the index sets��)�� and��)�� for every) � ��� � � � � 
	.
2 The root node of the tree is initialized as�� 
 ���� � � � � %�	� ��.
3 The set of unexplored nodes is initialized as� 
 ���	.
4 Select any unexplored node�� � � and let� 
 � ���.
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5 Compute the approximations��������)�� for all ), and sort the hyperplanes
by the quantity������������ � ��)����� �������� � ��)�����.

6 Compute (the exact)��� � ���� � )�� for each of the first%� elements of the
sorted list of step 5 (See below for how%� is selected). This is done by solving
the LPs (17) for each$ � ����� � ��)

�� � ��)��. Select)� among these as
)� � ������� ���������� ��� ������ ���.

7 Complete the node as�� 
 )�, and create two child nodes,�� 
 ���� ����
)��.

8 If ������� � �, add�� to� . Else�� is a leaf node, let�� 
 �����.
9 If � �� �, go to step 4, else terminate.�

The computationally most expensive steps of this algorithm are steps 1 and 6. In
step 1, one has to determine for each hyperplane, which side every region"� lies
on. This can be implemented by solving	
%� LPs (17), which is computation-
ally expensive for large problems. If the vertices of every"� are available, these
LPs can be replaced by simple arithmetic operations, giving considerably faster
computation. If computation of the vertices is considered to expensive, one can
for each"� compute a set of points+�, such that"� � �,% �+�� (�,% denotes
the convex hull). Such vertices can e.g. be found by using outer parallellotopic ap-
proximations as in (Vicino and Zappa, 1996). Each of the	
%� cases can now be
determined by simple arithmetic operations, except when�,% �+�� is split by a
hyperplane, when LPs still has to be solved. In step 6, one also has to solve LPs to
find the exact��� . The number%� of hyperplanes which are checked in step 6 can
be varied to trade-off between the off-line time required to generate the search tree
and the complexity of the tree. In the examples of Section 5,%� has been chosen
to be�)�������, where)������ � �)�������������� ��)���� ��������� ��)���� �
����� ���������������)����� �����������)�����	, which means that only hyper-
planes which minimize the criterion in step 5 are considered in step 6. To further
decrease off-line computation time, one can in step 5 consider only hyperplanes
corresponding to remaining polyhedral regions�� (e.g.)� and)� for node�
 in
figure 1). Moreover, hyperplanes defining the boundary only between regions with
the same control law (as)
, )
 and)� in Figure 1) can also be disregarded in step 5,
as they are not needed to complete the search tree. Often the best hyperplane)�
from step 6 is not unique. Among the set of hyperplanes which are best from the
criterion in step 6, one can further refine the selection. Consider

1 ���
�

��������� �� ��
�
� ���,

2 �������� �� ��
�
� �� and���������� ��� ������ ���.

By considering the first of these additional criteria, one tries not only to reduce
the number of possible control laws from one level of the tree to the next, but
also the number of polyhedral regions in which the state�� may be. Reducing
the complexity between tree levels in this way, has in examples shown beneficial
results. The second criterion considers the least complex of the two child nodes.
By reducing the complexity of this node, one can reduce the total number of nodes
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in the tree. This will however not contribute to reducing the depth of the tree. The
next algorithm is used on-line to traverse the search tree.

Algorithm 3 (Traverse search tree)

1 Let the current node�� be the root node of the tree.
2 while�� is not a leaf node
3 Evaluate the hyperplane*��� � '��� ( corresponding to��.
4 Let�� be one of its child nodes according to the sign of*���.
5 end (while)
6 Evaluate the control input���� corresponding to��. �

In general, the worst-case number of arithmetic operations required to search the
tree and evaluate the PWA function is�	% � ��- � 	%#, where- is the depth
of the tree,# is the number of inputs and% is the number of states. At each node
there are% multiplications,% additions and� comparison. Moreover,	%# opera-
tions are required to evaluate the affine state feedback of the leaf node. Regarding
memory requirements for the data structure, the most efficient is to store each of
these solutions in a table, and give a pointer to an element in this table for each
leaf node in the tree. Similarly, there is only a small subset of all the hyperplanes
representing the regions"� which is used in the search tree. Moreover, each of
these hyperplanes are usually used in several nodes of the tree. So the hyperplanes
should also be stored in a table, while using pointers to this table in the non-leaf
tree nodes. This would require each leaf node in the tree to contain one pointer to a
table of control laws, while each non-leaf node would contain one pointer to a table
of hyperplanes, and an additional pointer to each of its child nodes.

4 Estimated Complexity of the Tree

This section will give an estimate of the depth and number of nodes in a tree for
a given problem size. Such an estimate has to be based on how discriminating the
hyperplanes selected in step 6, Algorithm 2 are. The estimate does not take into
account that several regions can have the same affine control law. In the best case
we will in each node of the tree be able to select a hyperplane which has half
of the remaining regions on each side. This will obviously give a tree where the
depth would be- � ����
�%��� , and each hyperplane would be stored once in
the tree. Obviously this best case estimate would not be possible for anything else
than problems with a very special partition. We can however give a more realis-
tic estimate. Assume that the hyperplane selected in a node�� has the property
��	����

�
�����

�
��

����
� .� . � 
��� ��, where. � ��� corresponds to the best case. Since

���� � %� for the root node, the depth of the tree would then be given by

%�.
� � �� (18)
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or equivalently,

- �

�
�� �

��

��.

�
�

�
�
��%�
��.

�
� (19)

If the tree is ’full’, that is the depth is the same for all leaf nodes, the approximate
number of nodes in the tree is

	� � 	��
����
��� � � %

� ���

���
� � (20)

In our experience, an. of 

�

is a conservative estimate when using Algorithm 2.
This would give- � ���� ���
 %�� and the number of nodes would be%���

� . How-
ever, regardless of the size of., the depth of the tree would be a logarithmic func-
tion of %�, while the number of nodes would be polynomial in%�. Note that the
complexity of the tree would be considerably reduced in the case of explicit MPC
solutions, where we can stop dividing the tree when we know the affine control law
which is optimal, without knowing the exact polyhedral region in which the state is.
Moreover, the tree is usually far from ’full’, so the estimate of number of nodes is
conservative. The examples in the next section therefore show a considerably lower
complexity than the given estimate.

5 Examples

In the examples of this section, Algorithm 1 is implemented by storing each re-
gion in the partition, represented by its hyperplanes, and the corresponding affine
function parameters. Obviously this algorithm could be improved both in terms
of computational complexity and storage, e.g. by computing unions of polyhedra
where the affine control law is the same (as in (Bemporadet al., 2001b)).

Example 1 Consider the linear system(Borrelliet al., 2001b)

���� �
�

��
���� (21)

which is discretized with sampling time/� � �. The system is subject to input
constraints,�� � ���� � � and output constraints,��� � ���� � ��. For the
quadratic case (mp-QP), an MPC controller is designed with� � �, � � 0���,
� � ���� and� � �. The explicit solution consists of 213 regions. Table 1 reports
the comparison between Algorithm 1, the algorithm from (Borrelliet al., 2001b)
and Algorithm 3 in terms of requiredstorageand arithmetic operations to compute
the control input. The generated search tree has a depth of�	, containing�
��
nodes.��
 unique hyperplanes occur in the tree, and there are�� different affine
control laws representing the PWA function. The off-line computations to generate
the tree was done in less than 1 minute, using Matlab 6.0 on a 1GHz Pentium III.

�

9



Table 1
Performance of search tree for mp-QP solution

Alg. 1 Alg. from (Borrelli et al., 2001b) Alg. 3

Storage (real numbers) 9740 1065 1615

Storage (pointers) - - 2945

Arithmetic ops. (worst case) 20668 3489 116

Example 2 In (Borrelli et al., 2001a) the authors gave a solution to a constrained
optimal control problem, solving a traction control problem using a hybrid model.
This was formulated as an mp-MILP, and solved explicitly. The resulting controller
was a PWA function consisting of��� polyhedral regions, giving a single control
input as a function of 5 states. The performance of using a search tree to represent
this PWA function compared to a sequential search is shown in Table 2. The search
tree has a depth of�	, and consists of���� nodes. However, it contains only���
unique hyperplanes and�
 unique affine control laws. The off-line computations to
generate this tree was done in less than 4 minutes.

Table 2
Performance of search tree for mp-MILP solution

Alg. 1 Alg. 3

Storage (real numbers) 34776 1350

Storage (pointers) - 2277

Arithmetic ops. (worst case) 68834 156

�

6 Conclusion

We have presented a binary tree structure designed to give very efficient evaluation
of PWA functions. Our method gives a PWA evaluation time which islogarithmic
in the number of regions representing the PWA function. This allows considerably
faster PWA evaluation than existing methods. As the explicit solutions to MPC
problems are (often complex) PWA functions, the method is expected to widely
increase the sampling rates by which MPC can be applied.
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