Summary

Huge parts of the world’s oceans remain unexplored, and better knowledge about
the state of the oceans is essential when making decisions related to the possibly
harmful influence of human activities. Still, the harsh environment, huge size, and
inaccessibility of the ocean make exploration difficult. Recently, robotic vehicles
have become less expensive and more available and facilitate adaptive exploration
of the oceans. However, the difficulty of getting a sufficient number of observa-
tions (samples) of such a large domain is still hampering effective deployments,
and to improve efforts, the selection of informative sampling sites becomes cru-
cial. In this thesis, we address the problem of how to optimally perform sampling
using autonomous underwater vehicles (AUVs) in a dynamic and communication-
constrained environment. The motivating application of this study is that of en-
vironmental monitoring of concentrations of particles, say, from a mining release
site.

By combining underwater robotic sampling with ocean models, informative
sampling sites can be selected, and the robot’s path can be changed adaptively
based on in situ measurements to optimally map the tailings distribution near a
seafill. This thesis presents a stochastic spatio-temporal proxy model of dispersal
dynamics that can be used for adaptive sampling with an autonomous underwa-
ter vehicle (AUV). The proxy model is built using training data from complex
numerical ocean and particle transport models and consists of a spatio-temporal
Gaussian process model based on an advection-diffusion stochastic partial differen-
tial equation. Two sampling strategies are presented, aiming to choose informative
sampling sites based on the proxy model; an objective function favoring areas with
high uncertainty and high expected tailings concentrations and a strategy aiming
to detect the boundaries of excursion sets of high tailings concentrations. Most fo-
cus is on adaptive sampling using a single AUV. However, a strategy for multiple is
also presented where weighted Voronoi partitions are used repeatedly to divide the
survey area into regions to distribute the sampling-workload evenly between the
vehicles. The sampling methods are tested through extensive simulation studies,
and in actual conditions, in the fjord Freenfjorden where a seafill has been active
for several years.
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Chapter 1

Introduction

The oceans make up around 70%
of planet Earth, yet over 80% of
the world’s ocean remains
unexplored.

NOAA - How much of the ocean
have we explored? [56]

Huge parts of the world’s oceans remain unexplored. Better knowledge and
understanding through exploration are essential to effectively manage, conserve,
regulate, and use the oceans’ resources. But the harsh environment and the in-
accessibility of the sea make exploration difficult. Traditional sampling methods
typically include sensors mounted on ships or buoys, but they are expensive and
offer little flexibility. Recently, robotic vehicles have become less costly and more
available and facilitate adaptive exploration of the oceans. However, the difficulty of
getting sufficient observations (samples) of such a large domain is still present, and
the selection of informative sampling sites becomes crucial. This thesis addresses
the problem of how to optimally perform sampling in the ocean using autonomous
underwater vehicles (AUVs).

In this chapter, the motivation and background for the thesis are introduced.
An overview of the methodology and the research questions are presented, and the
scope and contribution of the thesis are given.

1.1 Ocean Observation: History and Challenges

Human interest in the ocean goes way back, and as early as 4000 BC, Polynesian
navigators traded over long distances in the Pacific [72]. In earlier times, obser-
vations of the ocean were characterized by systematic collection of data of winds,
currents, waves, temperature, and other phenomena from the deck of sailing ships
[76]. The first scientific expedition to explore the world’s oceans and the seafloor
was the Challenger Expedition (1872-1876). The expedition covered more than
100,000 km on the warship HMS Challenger, collecting surface and sub-surface
observations, and among many other discoveries, they cataloged over 4,000 previ-
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ously unknown species [67]. Since the Challenger expedition, numerous expeditions
have collected data from the ocean. Some known examples are the Fram expedi-
tion in the Arctic ocean [53] and the NORPAC cruises in 1955, where scientists
from Japan, Canada, and the United States combined their facilities and utilized
more than twenty oceanographic vessels to explore the North Pacific Ocean [57].
In the early 1970s, floating and fixed buoys were introduced as a tool for ocean
observation [51]. In 1978 NASA launched the first oceanographic satellite (Seasat),
measuring sea-surface winds and temperatures, wave heights, atmospheric liquid
water content, sea ice features, and ocean topography [9]. This resulted in an in-
creased number of observations, with satellite data giving a high resolution in the
spatial domain at the surface (but at a limited temporal scale) and buoy data
showing high resolution on a temporal scale, but only at selected spatial locations.
Even with numerous expeditions, and data from buoys and satellites, getting suffi-
cient observations of the oceans is difficult. Lately, robotic platforms have become
available and are used for ocean observation. Exploiting robotic platforms and es-
pecially AUVs can intensify ocean sampling, giving more data and better insight.
Ocean processes are highly nonlinear and non-stationary. The current state of ocean
observation is that the number of measurements we can collect is insufficient to
describe the ocean well enough. "Lack of sufficient samples is the largest source of
error in our understanding of the ocean" [76].

Today, multiple platforms can be used for ocean observation, and Figure 1.1
shows an observational pyramid for ocean observation. The sensors on the top of the
pyramid (satellites) typically measure on a large time scale; they give few details
on small-scale properties but are suitable for obtaining an overview and observing
large-scale changes. Information from these platforms can be used by platforms
further down in the pyramid, such as surface vessels, AUVs, and fixed platforms,
to decide which area small-scale observation should focus on. Utilizing all possible
platforms, from satellites on the top to AUVs, ROVs, and fixed platforms on the
bottom will lead to a better understanding of the ocean.

Some important challenges related to the current state of ocean observation are
listed below:

e Complex interactions: Ocean processes are complex, nonlinear, and highly
dependent on time and space. This is due to the ocean’s turbulent, heteroge-
neous, and episodic nature. Understanding and quantifying this influence is
complex. An observation taken in one location at the current time might not
be valid 10 minutes later, making it hard to have up-to-date knowledge.

e Sparsely distributed data: Getting a sufficient number of observations of
the ocean is not possible, resulting in sparsely distributed observations.

e Uncertain sensor observations: Observations are taken using sensors that
all have uncertainties related to the measured quantity. In addition, the sen-
sors themselves might affect the environment resulting in misleading obser-
vations.

e Harsh environment: The ocean environment is harsh and puts require-
ments on the equipment used for observing. Pressure, corrosion, and bio-
fouling might all affect, prompting a need for solid and robust equipment,
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Figure 1.1: Observational Pyramid for ocean observation. The figure shows the hier-
archy for observation of the ocean ranging from satellites on top (giving large-scale
observations) to AUVs and fixed platforms on the bottom, giving more detailed ob-

servations in smaller areas. Figure borrowed from Tor Arne Johansen and Kanna
Rajan.

which often makes the equipment expensive. The harsh environment also af-
fects field experiments, as currents, large waves, and strong winds make it
harder to install the equipment (and sometimes even impossible to install).

e Underwater communication: Underwater communication is complicated
due to factors such as multi-path propagation, time variations of the channel,
small available bandwidth, and strong signal attenuation, especially over long
ranges. Compared to communication above the sea, underwater communica-
tion has low data rates because it uses acoustic waves instead of electromag-
netic waves.

1.2 Autonomous Underwater Vehicles

This thesis focuses on using AUVs for ocean observation. The first AUV was called
SPURV (Self Propelled Underwater Research Vehicle) and was brought to the scene
in 1957 [82]. Since then, there has been a rapid development regarding AUVs with
the development of new technology. Today, AUVs are used in many applications,
e.g. offshore oil and gas [55], military applications [44] and for ocean exploration
[76]. An AUV is a free-swimming craft under the control of an onboard computer
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and can carry multiple payloads. Some standard sensors are; CTD (measuring con-
ductivity, temperature, and pressure), fluorometers, turbidity sensors, turbulence
sensors, and magnetometers. Types of AUVs differ in size, from lightweight AUVs to
larger vehicles longer than 10 meters. Smaller vehicles make the logistics easy with
a more straightforward launch and recovery and can typically operate for several
hours. Larger AUVs have an advantage in sensor payload capacity and endurance
and can often run for several days. When AUVs are used for ocean exploration,
some typical operations are; mapping of bathymetry as in [28], water-column sur-
veys as in [20], or even under-ice operations as in [49].

When AUVs are submerged, communication and navigation are limited due to
the attenuation of radio waves. Radio navigation, e.g., GNSS signals, can only be
used when the vehicles are at the surface. The location of a submerged AUV can
be decided by either using acoustic communication (finding the relative position
to subsea transponders or surface vessels) or based on dead-reckoning techniques,
which estimates the current position based on previously known GPS positions (at
the surface) and estimates of the AUV’s movement. Dead-reckoning utilizes sensors
such as IMU (inertial measurement units), providing measures of the acceleration
and rotation, and Doppler Velocity Logs (DVLs), which give the speed relative to
the seabed. In general, localization of AUVs is prone to errors making navigation
uncertain. Hence, surfacing is often implemented as part of the AUV mission to
avoid too large errors in the AUV position. A typical AUV mission has a pre-
planned path consisting of reference points which we call waypoints. Waypoints
are locations specified by their latitude, longitude, and depth, and the AUV moves
in a straight line between these waypoints. AUVs also can run adaptive missions
in which waypoints are selected on-the-fly.

Some pros and cons of using AUVs for ocean observation are listed below in
Table 1.1.

Table 1.1: Pros and cons of using AUVs for ocean exploration. Modified from [21].

Pros: Cons:

e Small environmental foot- e Limited navigation quality
print, low level of intrusion. when submerged.

e Able to travel in difficult, e Limited power supply lead-
harsh, and remote areas. ing to limited operation du-

e Independent of ships (and ration.
people). e Limited underwater com-

e Modular payload capacity. munication.

e Autonomous with the abil- e Limited possibilities for
ity to run adaptive mis- launch and recovery during
sions. harsh weather.

e Risk of losing vehicle (and
data) during operations.
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Figure 1.2: The robotic vehicle (L-AUV Harald) from OceanScan used in this thesis
during the field tests in the Frzenfjorden area. The length of the AUV is 240 cm, and
it is equipped with multiple sensors like CTD, Dissolved Oxygen, and Fluorometer.

1.3 Adaptive Sampling

Ocean sampling can be seen as the action of sensing or measuring one or more
physical properties in the ocean at a specific point in space and time. As discussed
in section 1.1, getting a sufficient number of ocean samples is hard. To be able to
collect the most informative observations effectively, an important question to ask
is: Where and when should we sample?

This problem of selecting informative sampling locations is often referred to
as experimental design (or sampling design) [38]. In sampling design, a model is
used to represent the domain, and informative sampling sites are selected based
on an optimization criterion. Many informative sampling methods build on the
work found in [27, 37] which consider the problem of choosing positions for sensor
placement using Gaussian Processes (GPs) [12] to model the environment. Other
early works of adaptive sampling can be found in [29, 83].

The models used for selecting sampling sites should include as much informa-
tion and knowledge about the environment as possible and use this as a basis
for path planning. In oceanography, building such models is challenging because
of the oceans’ large-scale nonlinear processes and high spatio-temporal variabil-
ity. Existing models using numerical methods continuously improve their accuracy
[23, 26], but they still have errors due to simplifications, limitations in numeri-
cal implementation, and uncertain parameters, initial and boundary conditions.
Hence, adaptive approaches that utilize prior information and incorporate knowl-
edge from observed data are beneficial. Such methods, which execute path planning
online during a mission, using information from real-time in-situ measurements, are
called adaptive sampling methods. Building on the work by [27, 37], [42] explored
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Figure 1.3: An overview of the adaptive sampling method. Data from ocean dynam-
ics models are used to create an onboard surrogate model able to run on an AUV.
Based on the current state given by the onboard model, waypoints are selected
based on design choice criteria. The AUV then travels to the waypoint and collects
measurements (observations). The observations are used to update the onboard
model.

adaptive methods using multiple robots and incorporating new data using dynamic
programiming.

This thesis will describe concepts used in adaptive sampling for water-column
ocean observation. Figure 1.3 gives an overview of the adaptive approach used in
the thesis. The steps of the approach are listed in the textbox below:

Adaptive sampling method

1. A model of the environment is constructed using prior knowledge.
The model includes prior knowledge from ocean models and is able to
run onboard the AUV.

2. Path planning is executed using the onboard model, and a new way-
point is selected leading the AUV to informative sampling locations.

3. The AUV travels to the selected waypoint.
4. Observations(samples) are taken using sensors onboard the AUV.

5. The onboard model is updated incorporating newly observed data in
the onboard model.

6. Step 2-5 is repeated until the mission is ended.

The benefits of adaptive sampling will depend on the situation. There are nu-
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merous studies on the value of additional (sequential) sampling efforts in different
contexts, say clinical trials in medical research [32] or geoscience data [17]. In our
case, there would be limited to gain by adaptation if a priori information makes it
possible to pre-script a high-value AUV plan before deployment. However, if there
is high prior variability, the ability to adapt the initial plan one way or the other,
based on onboard measurements, would bring added value by guiding the AUV to
more relevant places.

1.4 Field Experiments: The Fraenfjorden Area

Human population, industrial activities, and energy consumption continue to grow,
which has a massive impact on nature and the environment [2]. Environmental
monitoring refers to the tools and techniques designed to observe an environment,
characterize its quality, and establish ecological parameters to accurately quantify
an activity’s impact on an environment [41]. This is important to manage and
minimize the effects of human activities on the environment.

For organizations, this might be to ensure compliance with regulations or laws
or to mitigate risks of harmful effects on the natural environment and protect the
health of human beings. The primary motivation for this thesis is environmental
monitoring of particles spreading near a seafill with the Freenfjorden area in mind.
The field experiments in this thesis are all conducted in the inner parts of the
fjord Freenfjorden in Elnesvagen. On the shore of this fjord, the factory Omya
Hustadmarmor is located. The factory can be seen in Figure 1.5 and the location
of the fjord is seen in the map in Figure 1.4. In this factory, a calcium carbonate
processing plant has been operating for several decades. This processing of ore
from mining causes fine-ground waste called tailings [39], which must be disposed
of. The tailings are disposed of on the ocean floor, in a seafill close to the factory.

In Norway, there are several active and planned seafills, and they all have im-
plications for the marine environment [50, 65]. The tailings typically consist of
particulates and residual chemicals from processing, and this waste will smother
the sea bed close to the sea fill. In addition, some of the waste may be transported
by ocean currents away from the outlet, thus affecting a larger area of the sea bed
and the water column. There is still a lack of knowledge about the transportation
process of the waste. Models used to determine the transportation suffer from un-
certainties due to errors in input data and weaknesses in the model formulation
and configuration. Hence, development of enabling technology that performs effi-
cient and targeted ocean sampling is needed. In addition to such hindcast model
validation and correction, the information can be used in real-time to improve the
ocean and particle transport models using data assimilation.

The outlets in Frezenfjorden are located at approximately 20 m depth, and tail-
ings are continuously discharged with a time-varying discharge rate. The discharge
alters between two pipes, which we refer to as the eastern and the western pipe.
Figure 1.4 shows the location of these pipes.
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Figure 1.4: The location of Freenfjorden and the factory Omya Hustadmarmor AS.
The black lines represent the pipes where mine tailings are let out, and the numbers
represent possible outlets. The factory is marked in pink in the figure.

Figure 1.5: The factory Omya Hustadmarmor AS on the shore of Freenfjorden in
Elnesvagen. Here a calcium carbonate processing plant has been in operation for
several decades. Mine tailings from the factory are deposited on the seafloor in the
inner parts of Fraenfjorden.

1.5 Research Questions

The main focus of this thesis is the development of adaptive sampling methods
using AUVs. The primary focus is on coastal waters, intending to estimate a dy-
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namic field. In this thesis, the focus is on 2D models, but the methods can easily
be applied to 3D models as well. The motivating application of this study is that
of environmental monitoring of concentrations of particles from a mining release
site such as Fraenfjorden (see Section 1.4). With the described application in mind,
the thesis aims to answer the following questions:

Research Questions

¢ How can we create an ocean dynamics model that is compu-
tationally efficient, easy to update, and able to run onboard
an AUV?
The goal of the environmental monitoring is to obtain a good field
estimate of the spreading of particles. The model needs to be com-
putationally efficient, giving a good estimate of the environmental
status at all times and being able to incorporate new information
from AUV observations in real-time.

e How can prior information be utilized?
To perform optimal choices, all prior knowledge (e.g., from ocean
models or expert knowledge) should be included in the decision-
making. How can this information be incorporated into the onboard
models? What kind of information should be included? And how can
this information be utilized in the best possible way?

e What is the optimal way of taking samples using one or
multiple AUVs?
When the goal is obtaining the best possible field estimate, where
and when should samples be taken? What sites are most informative?
How can this be described mathematically and translated to AUV
behavior?

This thesis contains theoretical analysis, simulation studies, and field experi-
ments that will all be used to give answers to the above questions.

1.6 Publications and Contributions

The main contributions of this thesis are related to the development and analysis of
adaptive sampling methods using AUVs in the coastal ocean, including validation
and testing of the methods in the field. The thesis is based on papers published
(or submitted) in peer-review international journals and conferences. The main
contributions are summed up below:
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Main contributions

e Spatio-temporal GP model: The thesis suggests a surrogate
spatio-temporal model describing ocean dynamics. The model can in-
corporate prior information from ocean models, such as predictions of
ocean currents and particle concentrations. It uses Gaussian processes
and can implement knowledge from in-situ observation in real-time.
The spatio-temporal model is presented in part I of the thesis.

e Objective function for waypoint selection: An objective function
for waypoint selection during adaptive sampling is suggested. The
objective function aims to balance the exploration/exploitation when
sampling. On the one side, the objective function focuses on areas with
elevated model variance; on the other side, it focuses on areas with
high concentrations (e.g., detecting hotspots). The objective function
is described in Chapter 6.

e Voronoi strategy for adaptive sampling using multiple vehi-
cles: The thesis discusses using multiple vehicles for adaptive sam-
pling. An approach is suggested using weighted Voronoi partitions
to divide the sampling area into suitable areas for each AUV. The
method is presented in Chapter 8.

e Simulation studies: All methods described in the thesis are tested
through extensive simulation studies. The simulation studies give es-
sential insights into the sampling methods, showing pros and cons, and
are helpful for further development. Simulation studies are presented
in part IT of the thesis.

e Field experiments: As a proof-of-concept, several field experiments
have been executed during the thesis work. Results from the field
studies are presented in part III of the thesis.

This thesis is based on the following list of papers published in peer-review

international journals and conferences:
e Paper A: G.E. Berget, T.O. Fossum, T.A. Johansen, J. Eidsvik, K. Ra-
jan. Adaptive Sampling of Ocean Processes Using an AUV with a Gaussian

Proxy Model. 11th IFAC conference on control applications in marine sys-
tems, robotics and vehicles (CAMS), 2018. [4]

Contribution: The paper introduces the stochastic spatial onboard model
used in this thesis which is presented in Chapter 3. Data from numerical ocean
models (the ocean models are presented in Chapter 2) are used to build a
prior belief for the onboard model. The paper also introduces an objective
function for waypoint selection and path planning. Details on the proposed
objective function are presented in Chapter 6.

e Paper B: G. E. Berget, J. Eidsvik, M. Alver, F. Py, E. [. Grgtli, and T.
A. Johansen. Adaptive underwater robotic sampling of dispersal dynamics in

10
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the coastal ocean. The 19th International Symposium on Robotics Research
(ISRR), 2019. [5]

Contribution: In this paper, the spatial model from [4] is tested onboard
an AUV during field experiments in Freenfjorden. The paper presents results
from these field trials and adds details on the robotic platform, the embedded
system, and the implementation. Chapter 10 presents results from the field
experiments and includes the field trials presented in this paper.

Paper C: G.E. Berget, J.Eidsvik, M.O. Alver, T.A. Johansen. Dynamic
Stochastic Modeling for Adaptive Sampling of Environmental Variables Using
an AUV. Autonomous Robots. 2022 (conditionally accepted)

Contribution: Experiences from the two previous papers showed the need
for a temporal model. This paper introduces a stochastic spatio-temporal
model that can be used for waypoint selection. The model details are pre-
sented in Chapter 4. In the paper, a simulation study compares the proposed
adaptive sampling method to simpler strategies (one of them being the sam-
pling method proposed in [4]).

Paper D: K.H. Foss, G.E. Berget, J. Eidsvik. Using an autonomous un-
derwater vehicle with onboard stochastic advection-diffusion models to map
excursion sets of environmental variables. Environmetrics., Volume 33, Issue
1, February, paper 2702, 2022. [1§]

Contribution: In this paper, a similar spatio-temporal model as in is used,
but with another goal and focus. The goal is to monitor the excursion set
(ES) of high concentrations. Closed-form expressions for the expected mis-
classification probabilities of the ES enable real-time operation on board the
autonomous vehicle, and this is used to guide the spatio-temporal sampling.
Simulation studies show that the suggested strategies outperform other ap-
proaches that either (i) simplify the models for spatio-temporal variation or
(ii) simplify the design criterion. A field test shows how autonomous under-
water sampling helps refine an initial stochastic advection-diffusion model.
These experiments further show that the vehicle can adapt to focus on re-
gions with intermediate concentrations where it is natural to improve the ES
prediction.

Paper E: G.E. Berget, J.Eidsvik, M.O. Alver, T.A. Johansen. Multi-Robot
Adaptive Sampling for Dynamic Field Estimation in
Communication-Constrained Environments. 2022 IEEE Journal of Oceanic
Engineering. (submitted)

Contribution: In this paper multiple AUVs are introduced (see Chapter 8. A
multi-robot adaptive sampling method is suggested for use in communication-
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constrained environments such as the ocean. Weighted Voronoi partitions are
used repeatedly to divide the survey area into regions with the aim of dis-
tributing the sampling-workload evenly between the vehicles. In each par-
tition, adaptive sampling is performed using the spatio-temporal Gaussian
Process model from previous work running onboard the vehicles to represent
the field to be estimated. Data is shared when vehicles are within commu-
nication range to obtain an improved field estimate. Simulation studies are
conducted, estimating both a static and dynamic field. The results show that
repartitioning of the sampling regions during a mission improves mission ef-
ficiency compared to methods that use static regions throughout the full
mission.

1.7 Outline

The thesis is divided into four parts. The first part describes the surrogate (on-
board) model used for the adaptive sampling. The second part digs into the adap-
tive sampling method, which utilizes the model described in the first part. In the
third part, results from the field experiments in Freenfjorden are shown, and details
on the implementation on the robotic platform are given. The third and final part
concludes and discusses future research directions.

Part I: Modeling

The first part consists of three chapters and describes the details of the onboard
model. Chapter 2 introduces the numerical ocean models used to build the onboard
model. Chapter 3 discusses the GP spatial model used in the thesis and introduces
field estimation and excursion sets. The last chapter of this part (Chapter 4) ex-
plains the temporal part of the model so that we, in the end, have a spatio-temporal
onboard model describing the ocean dynamics.

Part II: Adaptive Sampling

The second part explains more details on the adaptive sampling methods in this
thesis. Chapter 6 gives details about waypoint selection and describes the objective
function used to select informative sampling sites. Chapter 7 considers another
criterion for adaptive sampling, optimizing waypoints for finding excursion sets.
Lastly, adaptive sampling for multiple AUVs is considered in Chapter 8.

Part III: Field Experiments

Field experiments in Freenfjorden are presented in part III. More details on the
robotic platform and the implementation of the methods are given in Chapter 9,
and results from three field trials are described in Chapter 10.
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1.7. Outline

Part IV: Conclusion

Finally, Chapter 11 sums up the work in the thesis, concludes, and describes future
research directions.
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Modeling
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Chapter 2

Ocean Modeling

All models are wrong.

George Box

The famous statistician George Box said in 1976: "All models are wrong." He
later modified this statement and added, "but some are useful" [10]. This quote
fits well concerning the models used in this thesis, where data from numerical
oceanographic models are used to build a prior belief of the state of the ocean
before deploying the AUV. This chapter briefly introduces ocean modeling and ex-
plains why ocean models are insufficient to accurately describe the ocean dynamics,
hence prompting the need for ocean observations. The chapter also presents the
two numerical models SINMOD (ocean dynamics model) and DREAM (particle
transportation model), used to describe the dynamics in the Fraenfjorden area.

2.1 Introduction to Ocean Modeling

Ocean models describe the state of the ocean at a given time, providing information
on temperature, salinity, currents, density, and pressure. The models are based
on a set of thermodynamic and hydrodynamic equations, commonly called the
primitive equations, and these are solved using numerical techniques. Running
these models is a computer-intensive task since it involves solving a large set of
equations. Thus, we get a trade-off between the resolution of the model and the
available computer resources. Because of these limitations, a high-resolution model
can only be computed for small areas. A common technique is nesting, where the
model is run at a large scale producing boundary conditions for smaller scale models
with higher resolution.

Input to ocean models typically includes tides, sea-level pressure, wind, heat
exchange, bathymetry, precipitation and freshwater runoff. Errors in these input
data and weaknesses in the model formulation and configuration can affect the out-
put data quality. Due to nonlinear ocean dynamics, such deviations can propagate
to more significant deviations in model predictions compared to actual conditions.
This might lead to predictions of eddies at the wrong location or time even though
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Figure 2.1: Monthly mean current for November 2013, at 20 m depth. The dashed
red line shows the area of the seafill, while the white squares indicate possible dis-
charge points. The white arrows show the current direction, and the color represents
the current speed. Figure from [54].

the overall eddy activity may fit well with actual conditions. Therefore, for applica-
tions of ocean models that require close correspondence between model estimates
and actual conditions at the simulated time and area, additional data from obser-
vations are beneficial (e.g., through sampling with AUVs).

2.2 SINMOD - Ocean dynamics model

SINMOD is a numerical ocean model system that connects and simulates physical
and biological processes in the ocean [74]. The model has been developed at SIN-
TEF since 1987 and has been applied to large portions of the Norwegian coast,
including fjords, the Norwegian Sea, and the Barents Sea. The model is based on
the Navier-Stokes equations [77] and uses a nesting technique where high resolution
models obtain their boundary conditions from larger model domains with lower
resolution. SINMOD is established in configurations with horizontal resolutions
ranging from 20 km to 32 m, and the model setup for 32 m horizontal resolution
use boundary conditions provided by a 160 m resolution. The 160 m setup, in turn,
uses boundary conditions from an 800 m setup, which is nested in a 4 km setup,
and finally is nested in a 20 km setup. Input to the model includes atmospheric
forcing, freshwater runoff, and boundary conditions (temperature, salinity ,surface
elevation, currents).

Figure 2.1 is an example output from the SINMOD model, showing the monthly
mean current for November 2013 in the Fraenfjorden area at 20 meters depth. The
figure is from [54].
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Figure 2.2: Mean sedimentation rate calculated from a six-month simulated dis-
charge period (June-November 2013). The dashed red line shows the area of the
seafill, and the white squares indicate the discharge points. Figure taken from [54].

2.3 DREAM - Particle transportation model

DREAM is a Lagrangian particle transport model [62] which can be used to sim-
ulate the behavior and fate of marine pollutants, including particulate discharges
from drilling operations [69, 70]. It provides time series of concentrations of released
materials in the water column and deposition of these materials onto the sea floor.
Input to the DREAM model includes hydrodynamic data delivered by SINMOD
and information about the release (amount, rate, densities, grain size distribu-
tion). DREAM is often used as a decision support tool for managing operational
discharges to the marine environment.

Example output from the DREAM model from the Frenfjorden area can be
seen in Figure 2.2. The figure shows the mean sedimentation rate calculated from a
six-month simulated discharge period from June - November 2013. In this period,
two discharges were in operation, shown as white squares in the figure. The figure
is taken from [54].

2.4 Fraenfjorden setup

In this thesis, SINMOD and DREAM have been used to represent the Fraenfjorden
area. A detailed data set from April 2013 is used for all the simulation studies. SIN-
MOD uses various input data. The bathymetry data is based on DBM Sgr-Norge,
supplemented by OLEX data recorded by SINTEF Materials and Chemistry. The
atmospheric input data is produced using the Weather Research and Forecasting
(WRF) (https://www.mmm.ucar.edu/weather-research-and-forecasting-
model) model simulated with boundary values from the ERA - Interim reanalysis
[15], and climatological data for freshwater runoff is used. Ocean dynamics data
from SINMOD are provided in NetCDF format for input to the DREAM model for
particle spreading. These data files cover the necessary area for the DREAM model
with a sampling time of 20 minutes for current and wind. In addition, information
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2. Ocean Modeling

about the release regarding the amount, size, and detailed location is provided by
the factory Hustadmarmor AS. A detailed description of the model setup can be
found in [54].

For this thesis’s work, three datasets from the same models (SINMOD and
DREAM) have been used. Information about these data sets can be seen in Table
2.1. This thesis uses the dataset from April 2013 for all simulation studies. In
addition, model runnings were done before and during all field expeditions.

Table 2.1: Overview of the different datasets used in this thesis. All datasets are
made using the particle transportation model (DREAM) and the ocean current
model (SINMOD). The resolution shows both the horizontal resolution and the
time resolution. The usage describes what the datasets have been used for in the
work of this thesis.

Time Period DREAM resolution SINMOD resolution Usage
April 1st - April 30th (2013) 16 m | 20 min 32 m | 20 min All simulation studies
October 16th - 19th (2018) 32 m | 20 min 32 m | 20 min Fieldwork October 2018
December 17th and 18th (2020) 32 m |20 min 32 m | 20 min Fieldwork December 2020

2.5 Ocean models as prior information

A prerequisite for effective mission adaptation is accurate information about the
spatial and temporal conditions. The models described earlier in this chapter give
a good picture of the ocean’s status at a given time. Unfortunately, this model
requires a lot of computer power and storage and cannot run in real-time onboard
an AUV. Instead, data from SINMOD and DREAM is used to build a surrogate
or emulator model which can be run onboard the AUV [25]. The onboard model
will be described in more detail in Chapters 3 and 4. Figure 2.3 shows the relation
between the onboard model, DREAM, and SINMOD. Ocean dynamics data from
SINMOD is used as input to DREAM, particle concentration data from DREAM
is used as input for the onboard spatial model described in Chapter 3, and current
data from SINMOD is used as input to the onboard temporal model described
in Chapter 4. The temporal and the spatial model are combined to obtain a full
onboard model describing ocean dynamics in both time and space.
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Figure 2.3: The relation between SINMOD, DREAM, and the onboard surrogate
model. Ocean dynamics data from SINMOD is used as input to DREAM, particle
concentration data from DREAM is used as input for the onboard spatial model
described in Chapter 3, and current data from SINMOD is used as input to the
onboard temporal model described in Chapter 4.

21






Chapter 3

Spatial Model

Everything is related to
everything else, but near things
are more related than distant
things [78]

Waldo Tobler

The quote by Tobler is referred to as the "first law of geography" and is consid-
ered the foundation of the fundamental concepts of spatial dependence and spatial
autocorrelation. Moreover, imagine; If you are looking for gold, where do you start
looking? You likely end up somewhere close to where gold has been previously
found because this is where you are most likely to find gold, and it is something
humans have learned from experience and intuition. This concept can also be seen
in the case of the spreading of particles underwater. We expect to observe more
particles near the outlet than further apart. Moreover, if we observe many particles
in one area, it is more likely that the neighboring areas also contain high concen-
trations. In other words, spatial occurrences tend to decay with distance, and we
want to integrate this fact into our models for adaptive sampling.

In addition to spatial dependencies, the models need to represent uncertainties.
Uncertainty measures are crucial in an adaptive sampling setting because very few
parts of the process are 100% correct; The measurements are uncertain due to un-
certainties in the sensors and the measurement localization due to AUV navigation
limitations. The real-world ocean dynamics may, in principle, be deterministic, but
since our information is incomplete at each observation stage, our understanding is
affected by uncertainty. Hence, there are two main properties we want the spatial
model to be able to represent; Spatial dependencies and uncertainties.

We have stated that a reasonable estimate of the underlying field is essential
to perform informative adaptive sampling. So-called field estimation is the estima-
tion of how a particular variable (in our case, the particle concentration in water)
varies in space and time, i.e., an estimate of its spatio-temporal distribution based
on observed or sampled data. This chapter presents the onboard model’s spatial
part, which will act as our best guess of the field’s status and include measures of
uncertainty.
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3. Spatial Model

3.1 Why use Gaussian processes?

The numerical high fidelity models presented in Chapter 2 are computationally
intensive, and the current versions of AUVs cannot run such models onboard in
real-time. Instead, a surrogate or proxy model is commonly used to represent the
state of the ocean at all times. This model is often referred to as the onboard
model in this thesis. In the literature, different types of such models are proposed;
[79] suggest using neural networks, and [71] use linear combinations of static basis
functions. However, most adaptive sampling methods utilize GPs [12], which are
widely used to create non-parametric and computationally efficient models. They
are popular not only for adaptive sampling but used in various applications like
neuroimaging [31], machine learning [66] and sensor placement [38]. Combining
GPs with robotic vehicles is amongst others explored in [84] where an AUV is used
to track an upwelling front, and in [13] who use an AUV to collect samples for
ex-situ analysis, selecting the sampling locations based on previous missions and
maximizing a utility function. [43] explore a method of multiple vehicles using a
mixture of GP models. Some reasons for the GPs’ popularity (and the reasons why
GPs are used in this thesis) are listed below:

e Efficient computation and updating: Compared to the numerical models
described in Chapter 2, GPs are computationally efficient, and it is easy to
update the model belief with new knowledge from observations. Still, the
computational time increases as the size of the modeled domain increases.

e Easy incorporation of prior information: As we will describe in detail
in this chapter, GPs can be fully expressed by their mean and a covariance
matrix. Hence, this alleviates model fitting to the first- and second-order
moments of the relevant process [14].

e Represent uncertainties: GPs can provide measures of predictive uncer-
tainty (e.g., variance or entropy [mutual information| criterion), which can
be used to quantify information gain as an uncertainty reduction.

3.2 Notation

In this thesis, we restrict attention to the case of 2D spatial models. However, all
theory applies and can easily be expanded to 3D. The random variable describing
the quantity of interest is X. It may depend on both time, ¢, and space, s, and
is then denoted X(¢,s). In the general case, the time and spatial variables are
continuous, but they are discretized at some point. The spatial component is two-
dimensional and given in the Cartesian coordinates east and north. That is, s =
(Sey Sn) - If the temporal component is fixed, it may be introduced as a subscript:
X, (s), meaning that X, is a spatial variable. This notation is often used in the
discrete time case to emphasize that the time variable may not vary arbitrarily
and is, in that sense, fixed. When the spatial component is fixed, s = s;, regular
notations, X (¢, s;) or X;(s;), are used.
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3.3. Gaussian processes

3.3 Gaussian processes

A GP is defined as a collection of random variables with a multivariate normal
probability density function (also called multivariate Gaussian probability func-
tion). This way, analytical solutions are found easily since all finite subsets of the
domain will also follow a multivariate Gaussian distribution. In the application of
this thesis, a GP is used to characterize the particle concentration at given points
in space, discretized down to a regular 2D grid. We let D C R? be some finite
2-dimensional grid, with ng grid points in eastern direction and ny grid points in
northern direction. Resulting in a total grid size of n = ng x ny. The variable of
interest is the particle concentration represented by, X;(s);s € D C R2. When this
field is modelled by a GP, we have that X; = (X;(s1), X¢(82),..., X¢(sn))T, for
any configuration (81, S2,...,8,) € D, i =1,2,...,n are jointly Gaussian with the
density function

T :;x —1:1:— tT Tl — t
@) = oo (<@ w) S @) G

Hence, the estimated field X, is fully represented by the mean vector p; of size n
and the correlation matrix 3, of size n x n, giving

Xt ~ Nn(ut,Et). (32)

3.4 Initial State

When using GPs in a spatio-temporal setting, the model is updated as new ob-
servations are obtained and as time passes. A spatial GP models the initial state
estimate. At the beginning of an adaptive sampling mission, we have t = 0, and
the initial state is given by

Xo = (XQ(Sl),Xo(SQ),...,X()(Sn))T, (33)
Xo ~ Na(po, Zo). (3.4)

Hence, the mean pg and the covariance ¥y needs to be determined. The mean pg
can be interpreted as the best estimate of the particle concentration at time ¢ = 0.
In this thesis, prior information from the numerical ocean models presented in
Chapter 2 is used to determine the model mean values, which is further explained
in chapter 5.

The initial state covariance matrix 3, describes two important properties of
the state: It describes the noise of the system, i.e., the variance of the value in each
grid cell. Further, the matrix takes into account the spatial correlation between the
variables. As discussed earlier in this chapter, the fundamental concept of modeling
spatial correlation needs to fulfill two main properties: i) that correlation decays
with distance and ii) that the covariance matrix is positive definite. To achieve
this, it is common to use generic functions to define 3¢ [66]. In the setting of GPs,
we speak of kernels [66] while we in statistics often speak of correlation functions

25
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or variograms. The covariance matrix is given by

S0 = , (3.5)
Y1 Znz e Som

where ¥;; = 0;0;R;; and R;; is the correlation function. Hence, the diagonal of the
covariance matrix contains the variances o2, and the off-diagonal elements describe
the covariance between the locations. It is common to assume isotropic correlation,
where the correlation only depends on the Euclidean distance between variables on
the grid [17]. Isotropic correlation is used throughout this thesis.

3.5 Updating

Additional information can be added to a GP field estimate through conditioning,
and GPs are used in a Bayesian setting. Let us now assume we have a measurement
vector of size m at time ¢ represented by the random variable

Y, =G X, + €, (3.6)

where G; is a m X n matrix specifying the sampling design at time step ¢. The
matrix rows have one-entries on the vector position of the measured values, and the
rest is zero. Each measurement error ¢; is independent and Gaussian distributed
with zero mean and standard deviation given by 7. Hence, we have e ~ N (0, 721I,,),
where I, is the m x m identity matrix. We have that

Y| X, ~ N(G,X,,7°1,,). (3.7)

Now, assuming that ¢; and X; are independent, and since linear combinations
of Gaussian distributed random variables also are Gaussian distributed, we have,
This is called the likelihood in the Bayesian framework, but we will refer to it as
the data model. We have the following properties for the distribution of Y;

ElY] = Gipr, (3.8)
Cov(Y;) = 7°I,, + G,=,GYT. (3.9)
The next step is to update or model for the whole system when measured values

are added. Hence, we need the distribution of X;|Y;, which is called the posterior
distribution. If we let the realization of Y; be y;, we have

XAYi ~ Nn(/”tlytvzt\yt)v (310)
iy, = Ht + z]tGgw(TzIm + GtztG?)_l(yt — Gipy), (3.11)
Sy, = S — BG (7L, + GEGl) TG R (3.12)
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3.6. Excursion Sets and Probabilites

3.5.1 Example: GP update

In this section, a short example illustrating GP updating is given. The prior state
is shown in figures 3.1a and 3.1b. A measurement of the value 9 with uncertainty
7= 0.5 in the gird cell (20,6) is then used to update the GP. The posterior result
can be seen in figures 3.1c and 3.1d. The example shows that the state mean at the
measured grid cell increases and becomes quite close to the measured value. Due
to the selected kernel, the update also affects the neighboring grid cells. The same
tendency is seen in the updating of the variance.
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Figure 3.1: The figure shows one GP update. The prior state is shown in figures
3.1a and 3.1b. A measurement of the value 9 in the grid cell (20,6) is then used to
update GP. The posterior result can be seen in figures 3.1c and 3.1d.

As we see from the figure, the model mean at the sampling location is changed
and is now close to the observed value. For the variance, we observe a decrease at
the grid cell of the observed value. Because of the kernel, the surrounding grid cells
are also affected by the update.

3.6 Excursion Sets and Probabilites

ESs indicate where the variables of interest are above some critical limit. Identifying
ESs is essential in several environmental applications [1, 24]. Let I be the critical
limit of the variable. A random ES over the domain D, at time ¢ is here defined as

ES; = {Si €Dy : Xt(si) > l} (313)
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3. Spatial Model

In this context, ¢ is a particular time of interest, where one, in our case, can take
some action to mitigate the concentration level by, for instance, reducing the mining
deposition rates. This reference time will typically be the latest monitoring time.
Note that expression (3.13) defines just one of several kinds of ESs [7, 8]. Excursion
sets are usually represented by zeros and ones. In our case, the random excursion
set is represented as an N-sized vector with values given by

1 X(SZ) > 1,
ES(s;) = (3.14)

0 otherwise.

This thesis uses the excursion probability (EP) to define the random ESs. EPs
define the probability of the random variable being above the critical limit {. In

our case, where the random variable is multivariate Gaussian, the EP at time ¢ is
defined as

EP(s;) = P(X1t(s;) > 1) (3.15)
e ( |~ B[X,(s:) )
Var(X;(s;))

where ®() is the Gaussian cumulative distribution function. The ESs are then
predicted by using a cut off value EFP,,; = 0.5.

3.6.1 Example: Excursion sets

We now show a simple example to illustrate the use of excursion sets. Figure 3.2
shows excursion sets for different values of the critical limit [ given the Gaussian
field in figure 3.2a. The yellow color represents the excursion sets. As seen from the
figures, a greater value of [ leads to smaller excursion sets, as there are fewer grid
cells with values exceeding the critical limit.

3.7 Limitations and considerations

Some assumptions need to be taken when using GPs to create an onboard ocean
model. The kernel used for spatial dependencies assumes an isotropic relationship;
it is assumed that the correlation does not depend on direction. However, ocean
dynamics are turbulent, and the direction of currents due to episodic events such
as tides and due to the bathymetry, makes ocean dynamics both non-isotropic and
non-stationary in real-life. Even though GPs are computationally efficient for the
purpose used in this thesis, having even larger data sets would give rise to problems.
The computational demand of the updating equations is O(n?) or O(m?), but since
we here operate with m << n the term O(n?) will dominate. Hence, considering
larger areas and/or expanding the model to 3D can become problematic. Many
approaches use sparse GPs as a solution to this problem. Some examples can be
found in [80] and [46]. Another option is using Gauss-Markov models as in [40] to
describe the GP.
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Figure 3.2: Excursion sets for different values of the critical limit [ given the Gaus-
sian field in figure 3.2a. The yellow color represents the excursion sets.
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Chapter 4

Spatio-temporal Model

The ocean’s currents are a
turbulent emotion which man has
yet to come to terms with.

Anthony T. Hincks

In the previous chapter, the spatial part of the onboard model was presented.
However, modeling the spatial correlations is not enough to give a good picture of
the particle transportation near a seafill. Ocean dynamics are fundamentally tur-
bulent, nonlinear and nonstationary. Hecnce, being able to incorporate knowledge
about currents and changes with time is important. This chapter introduces time
as a variable and spatio-temporal GPs are considered. A linear temporal model is
built using an advection-diffusion stochastic partial differential equation (SPDE).
It is shown how the linear SPDE model together with the Gaussian measurement
model from the previous chapter can be written as a state-space model and a
Kalman filter can be used to update the model.

4.1 Advection-Diffusion model

The spatio-temporal process of transport of a medium in a fluid can be expressed
by the advection-diffusion SPDE [73]:

0X(t,s)
ot
with c(t, 8) = (ce(t, 8),cn(t, 8))T being the drift vector field for advection, D the

diffusion matrix, €(t,s) a noise term, V the gradient operator (a%c, afn) and

=\X(t,8) —c(t,s)'VX(t,s) + VDVX(t,s) + B(t,s) +e(t,s), (4.1)

A € [—1,0] a damping constant controlling the autoregressive relationship between
state vectors [68]. The damping constant relates to the concentration reduction
over time, which in our case could describe the decay in concentration due to
sinking. The noise term (¢, s) is assumed to be a zero-mean Gaussian noise term
that is uncorrelated in the temporal domain but spatially correlated. The source
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term B(t, s) describes external factors, e.g. boundary conditions. In this thesis, we
assume horizontal isotropic diffusion leading to a constant diffusion parameter D.
To find a linear approximation of the SPDE, equation (4.1) is discretized using
an upwind differencing scheme. We define the length of a time step as dt, and we
define a spatial grid Dy with resolution ds. in the east direction and ds, in the
north direction. Forward differences are used in time, giving
X(t+dt,s) — X(t,s
%X(t,s)m (t+ ’di t,3). (4.2)
For the first derivative in space we alternate between forward and backward
differences, based on the direction of the drift vector ¢;. In eastward direction we
have

X(t,s — (dse,0)T) — X (¢t
82@)((15,3)% (t,s = ( Sd’gj ) (’S), for ¢/ >0 (4.3)
0 X(t,s+ (dse,0)T) — X (¢, 8) .
aseX(t,s) ~ ds. , for ¢, <0, (4.4)
and in the northward direction
0 X(t,s —(0,ds,)T) — X(t,8) .
—_— = > .
8snX(t’ s) s, , for ¢, >0 (4.5)
0 X(t, s+ (0,ds,)T) — X (¢, 5) "
a—snX(t, s) ~ ds, , for ¢, <0. (4.6)
The second derivatives are discretized as follows,
82
@X(t, S) ~
X(t, 8+ (dse,0)T) —2X(t,8) + X (t, s — (dse,0)T)
(4.7)
ds?
32
T&%X(t’ S) ~
X(t, 8+ (0,dsn)") — 2X(t,8) + X(t,8 = (0,dsn)”) (48)
ds? ' '

4.1.1 Boundary conditions

When solving the SPDE, boundary conditions are required. Given a rectangular
grid, information about the edges of the rectangle must be given. There exists a
variety of BCs depending on the physical property of the boundary. In this thesis,
only Dirichlet BCs and Neumann BCs are considered. Dirichlet can be seen as a
constant source along the boundaries and knowledge about the state values on the
boundary is used. Another type of BCs is Neumann BCs which is defined by

)
Go X (1) =0, (4.9)

for the locations s on the boundary. This The BC terms are all collected in the B
vector in equation (4.1).

32



4.2. State-space representation

4.2 State-space representation

By scaling the time discretisation, a change in time can be denoted ¢+ 1 instead of
t + dt. We have {t =tg+j x dt;j =0,1,2...}. When inserting all the discretized
terms into equation (4.1), the upwind scheme can be written as a linear process on
the form

Xt :Atthl +Bt+€ta €t "\-/]V(O7 Wt); t= 1,...,T, (410)

where X is the size n X 1 vector of particle concentrations at time step ¢ for all
spatial locations, A; is the nxn state transition matrix including information about
advection, diffusion and damping, B; is a matrix adding external information, in
our case boundary conditions, and W; is a positive definite variance-covariance
matrix for the noise term €;. The initial distribution is specified as X ~ N (g, Xo).

The state of particle concentrations is assumed to develop in space and time
according to equation (4.10). The aim of data assimilation is to combine information
from observations with this prior process knowledge to obtain an optimal sequential
posterior or filtering estimate of the state at the current time.

Updating the distribution of X} is done in two steps; the forecasting step and
the filtering step. During forecasting the process model in equation (4.10) is taken
into account and we get the distribution

Mijt—1 = Apy_1jt—1 + By (4.11)
Siio1 = A1 AT + W (4.12)
Further, we have the data model as in equation (3.9):
Yt\letq ~ N(thJJt|t—17 Q:), (4.13)
Qi =71, + G2y 1 GY (4.14)

Lastly, the updating step is presented. Here, the added information from mea-
surements is incorporated, and the forecasting distribution is obtained as

Pt = Hejt—1 + Et\tfthTWfl(yt — Gipye—1), (

4.15)
Sy = Bip—1 — Bp1GL QG (4.

1
16)
This can be recognized as the spatial Kalman filter. Letting Z; = (Y7,...,Y;) rep-

resent all observations and prior information up to time ¢, the filtering distribution
is X¢|Z; ~ N(py)¢, Xyp¢) with mean py; and variance-covariance X, defined by

Siio1 = A1 A + W, (
Qi = Gt2t|t—1GtT + 70 (
K, =%y 1G{Q;" (4.19
Mije—1 = Aty 141 + By (
Moje = pyje—1 + K (Ye — Gipryp—1) (
Y= Ry — KtQtzat_l- (4.22

Starting with the initial mean pg and covariance matrix g, the updating can
be done sequentially as time passes.
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4. Spatio-temporal Model

4.3 List of Symbols

The spatio-temporal model presented in this chapter is used througout this thesis.
This last section gives a summary of the model by providing a list of symbols used
for the onboard proxy model.

List of Symbols

X Particle concentration

Model mean

b Model covariance

o Model variance

Correlation function

Y Measurement vector

€ Measurement error

T2 Measurement variance

G Measurement design matrix
n Grid size

m Number of measurements

t Time

s Location

D Diffusion

c Advection field

Transition matrix
Matrix containing information on boundaries

Temporal covariance

X S & »

Kalman gain
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Chapter 5

Parameter Specification

Learn from the experts; you will
not live long enough to figure it
all out by yourself.

Brian Tracy

In this chapter, we show how to utilize prior information from the ocean models
described in chapter 2 to learn the spatio-temporal GP model from chapters 3 and
4. Brian Tracy said: "Learn from the experts; you will not live long enough to
figure it all out by yourself." In our case, the expert knowledge comes from the
numerical ocean and particle transport models. This chapter aims to specify the
parameters of the initial state model and SPDE process model to describe the
conditions surrounding the seafill in Freenfjorden.

Similar approaches, also utilizing prior knowledge to learn GP models, can be
found in [13] who use an AUV to collect samples for ex-situ analysis, selecting
the sampling locations based on previous mission data and maximizing a utility
function, and in Ma et al. [45], who create a model of a spatio-temporal environment
by learning and refining the hyperparameters of a GP kernel using prior ocean
model data.

The parameter specification presented in this chapter is based on the work in
Paper C. However, the approach throughout all the papers has been quite similar,
with only minor variations.

5.1 Initial state

The initial state is defined by the mean and covariance po and 3g. To specify
the mean, forecast data from the particle transportation model DREAM is used.
The prior mean po = [to1,- -, o] is set to be the DREAM prediction of the
state at the start time of a mission. In the case of environmental sampling, it
should be noted that measurements taken in a field with biological phenomena
such as hotspots, i.e., a field with a couple of areas of high-value measurements,
typically follow a log-normal distribution [30]. This is typically the case for particle
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5. Parameter Specification

concentration in the Freenfjorden area. Hence, the log(concentration + 1) is used
to specify the initial state.

Since ocean processes are affected by currents, wind patterns, bathymetry, and
freshwater runoff, we will have elevated variability in some locations. Thus, we
choose a non-stationary prior model [33] where the variance in each location is
specified empirically from the training data available by DREAM. Saying, we have
D realizations of training data; the empirical variance is given by,

Mb

yz d— /1'1 . (51)
d:

Here, pu; = % de:l Yi,d is the empirical mean concentration in location s; over all
D realizations of training data. As, also stated in chapter 3, the prior covariance
matrix Xg is given by

Z11 E12 cee 2177,
221 222 . Egn

o = , (5.2)
Enl En2 oo Enn

where ¥;; = 0y0;R;; and R;; represents the spatial correlation. The diagonal of
the covariance matrix in equation (5.2) contains the location-wise variances o2,
and the off-diagonal elements describe the covariance between the locations.

A suitable correlation function R must be selected to find the initial covariance
3. To fulfill the two main properties for modeling spatial correlation (the decay
with distance and the fact that covariance matrices must be positive definite),
generic functions are used to define the initial covariance. Table 5.1 show three
common correlation functions; The exponential, the Matern (3/2) and the Gaussian
correlation function. Here, h;; = |s; — s;| is the Euclidean distance between two
locations s; and s;.

Name Function
Exponential exp(—oh)
Matern (3/2) (14 ¢) exp(—oh)

Gaussian exp(—ph?)

Table 5.1: Three common correlation functions. Here, h;; = |s;—s;| is the Euclidean
distance between two locations s; and s;, and ¢ is a parameter describing the
correlation length of the functions.
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5.2. SPDE parameters

Correlation functions are related to a concept called variograms, most used in
spatial statistics [48]. The relation can be seen from the definition of the variogram
given by [12]

Ysi — 55) =5 Var(X,(s:) — Xi(5,)) (5.3)
:%(Var(Xt(si)) + Var(X,(s;)) — 2Cov(X,(s;), Xi(s5)))-

Rewriting this and inserting the isotropic correlation function R and an initial

constant variance o we get

v(h) = o5 (1 = R(h)). (5-4)

When choosing an appropriate correlation function, variogram analysis is of-
ten used. The appropriate function is then chosen by matching the shape of the
curve of the experimental variogram to the shape of the curve of the mathemat-
ical variogram function. Figure 5.1 shows the fitting of empirical variogram data
from DREAM. Three variograms were fitted to the training data. All of them fit
the empirical variogram well, but the Matern variogram [47] was chosen because
it has a smoothness that fits the DREAM data well. The spatial variance term
and the spatial correlation length describe the effective variability and dependence
structure of the particle concentration field. Here, a variance of 0.6 and a spa-
tial correlation length of about 500 m results are supported by the physical ocean
model data. The advection-diffusion parameters are set from the physical assump-
tions going into the ocean model. From visual inspection, this GP model appears
to give reasonable simulations of the field but with more patchy randomness than
what is seen in the ocean model. As commonly seen in physical model data, the
variogram computed from the ocean models data starts to fluctuate after a while,
which can be related to physical principles in many cases. We decided not to fit a
variogram to these features to avoid overfitting the data. Notably, the GP model
is a statistical proxy model that can be run onboard but is potentially missing
some large-scale oceanographic features. The ocean model is a numerical descrip-
tion with much skill but potentially getting systematic bias due to misspecified
inputs growing with time. They both have their merits.

5.2 SPDE parameters

In addition to the initial state, the parameters in the SPDE need to be specified.
We specify the advection and diffusion parameters in equation (4.1) together with
the BCs represented by B; using prior knowledge about the ocean dynamics in
the selected survey area. Forecasts of the currents from SINMOD are used to set
the velocity field ¢; from physical assumptions, which is further used to build the
transition matrix A; as described in Chapter 4. We specify a small damping value
A = —0.0010 and diffusion constant D = 0.1 m?/s. The covariance matrix W; is
set to have the same correlation structure as the covariance matrix for the initial
state g, giving W; = V3, where V' < 1 is a scaling parameter for the dynamic
variance compared with the larger initial variance. Considering this in relation to
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Figure 5.1: Fitted variogram to empirical data. The Matern(3/2) was chosen with
a correlation length of about 500m and variance of 0.6.

the original continuous time SPDE, the discretization in time would also impact
this variance, but in our work, we use a fixed time discretization equal to the one
used onboard.

The boundary conditions (BCs) for the SPDE must also be considered, and
there are several approaches for setting the BCs. For the boundary conditions
(BCs) in the SPDE, we use Dirichlet BCs on the two sides from which the currents
flow. This can be considered a constant forcing along these sides and is chosen
because of the constant flow of particles entering the area. We assume an open
ocean with no change at the boundaries on the remaining sides of the survey
area and therefore use Neumann BCs. All BC terms are added to the B; vector
on the right-hand side of equation (4.1). The sides where Dirichlet BCs are used
can change during a mission if the current changes direction. In the Fraenfjorden
area, changes in direction frequently occur as the tides change. Figure 5.2 show
an example output from SINMOD. In this example, Dirichlet BCs is used on the
eastern and northern side.

P e A R
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D i e e i A A A A A S S e
W D S e e S e A A A A A A T o i i S i i
e . .

150 B e e i R S S o A
Q P i et P P P S P B B S B B P P
=100 P e e et B L S R S B o
[l P o i A A A A A A A e e et
ESO T e ——— i A WX N H N N E K N s s i A A

P ol A A A A A A A A A P S
P e i T A A A A A A A o
0] e ——————— A B EF S F A T a
o 200 400 600 800 1000
meters

Figure 5.2: An example output of ocean current data from SINMOD. The data
is used to set the advection field ¢. The currents also decide how the boundary
conditions are defined. In this example, Dirichlet BCs is used on the eastern and
northern side. Furthermore, Neumann BCs are used on the southern and western
side.
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5.3. Closing remarks

5.3 Closing remarks

This part of the thesis has defined the onboard model and builds the foundation
for the following parts of the thesis. The onboard model is based on GPs and
an advection-diffusion SPDE to create a spatio-temporal model for describing the
dynamic transportation of particles underwater. Parameters are specified based on
ocean model data from Freenfjorden.

39






Part 11

Adaptive Sampling

41






Chapter 6

Objective function

It’s not hard to make decisions
once you know what your values
are.

Roy E. Disney

The onboard model from the previous part can be seen as the best estimate of
the current state of the ocean, and is a useful tool for choosing informative sampling
locations. The question now is: "Where and when should we sample?" Sophisticated
sampling strategies are needed to exploit the benefits that robotic platforms have
regarding autonomy and high mobility. To obtain the most scientifically relevant
measurements effectively, adaptive approaches need to be developed. In contrast to
static/pre-scripted schemes, adaptive/data-driven strategies can react to measured
conditions, having access to both prior and in situ information. The selection of
sampling location can now depend on past observations and the developed onboard
spatio-temporal model.

Roy E. Disney said: "It’s not hard to make decisions once you know what your
values are." And this is the main question for this chapter. We need to determine
what values we want to base our decisions on. In the adaptive sampling process,
we need to decide where to travel. This chapter suggests an objective function
that aims to guide the AUV to informative sampling locations. The function is
first described in Paper A, and is further used in Papers B, C and E. Two
simulation studies are presented in this chapter; a static study from Paper A and
a dynamic study from Paper C.

6.1 Objective function

An objective function is suggested to obtain an informative path for the AUV. The
function is created based on three criteria:

1. Locations with high variance are preferred

2. Locations with high predicted concentration are preferred
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6. Objective function

3. Locations leading to a suitable travel length within the next time interval for

the AUV are preferred.

The first criterion is chosen because sampling in areas with a high model vari-
ance will reduce the total variance, hence creating a more accurate model. This
criterion also ensures that the AUV travels to unexplored areas. The second cri-
terion makes the method adaptive. When studying the simulation results of the
particle transport from the complex model, it is clear that the variability is highest
where there is a high concentration of particles. Hence, the criterion is inspired by
this observation and assumes that locations with high predicted concentration will
be rich with information. The last criterion comes from the travel length limitations
of the AUV. When choosing the next sample location, it is also essential that the
AUV does not travel too far, assuring that the risk of the vehicle drifting outside
the survey area is kept low.

The suggested objective function is then created by having a term for the first
two criteria. At time step ¢ for location s;, the objective function is given by

ft(Si) = 91UZW + 92Mi,t|ta (6-1)

where the constant parameters 8 = [0, 03] define the weighting for each criterion.
Deciding the weighting of criteria 1 and 2 depends on design choices. When the goal
is to obtain a good map of the overall region, then criterion 1 should be dominating.
However, if hotspots are the main focus, criterion 2 should dominate. In our case,
the parameters @ are tuned in simulation to obtain a good balance between the
two criteria.

The chosen sampling location s} at time step ¢ is determined as the location that
maximizes the objective function f;(s;) for s; € [s1,...,8,]. Given the previous
sampling location s}_;, we choose the next sampling location as

s; = argmax  fi(s;) (6.2)

st |si_; — 8i| > dmin

|S:—1 - si| < dmax-

The constraints on the objective function ensure that the third criterion in the
objective function is adhered to by choosing dnin and dpyax such that a suitable
travel length is obtained. |s}_; — s;| is the Euclidean distance between the previous
sampling location and s;. Equation (6.2) is solved using brute-force enumeration;
the value of the objective function (equation (6.1)) is found for all the grid cells
within the region defined by the constraints in equation (6.2). The next sampling
waypoint s} is chosen as the grid cell with the highest objective value. In this paper,
ocean currents are included in the spatio-temporal proxy model, but they are not
considered in the AUV navigation plans for selecting sampling locations. Rather,
the AUV is set to surface often to avoid risk and reduce navigation uncertainty, as
described in the experimental section. In a larger-scale mission, it would certainly
be beneficial to include more of the ocean currents in the sampling strategy. Making
the AUV fly with the currents may increase endurance and reduce travel time
between waypoints. This topic is amongst others explored in [58] and should be
considered in future work.
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6.2 Summary of the suggested approach

We now provide an overview of the suggested approach. At the beginning of the
deployment, the GP model is initialized. The following steps are executed:

e Kernel hyperparameters are estimated using prediction and hindcast data
from the particle transportation model DREAM.

e The initial GP state defined by po and g are found.

e Ocean current prediction data from SINMOD is used to define the advec-
tion fields ¢;, which is used together with the diffusion constant D to define
transition matrices A;.

e Particle transportation data from DREAM defines the boundaries that are
incorporated in the vector B;.

The sampling method starts out either with the initial GP model or with the
latest updated GP model.The AUV performs adaptive sampling choosing the next
waypoint using the objective function. The onboard model of the AUV is then up-
dated; the field is moved with the currents, and new information from observations
is added. Updating is executed whenever a waypoint is reached, using data from
observations taken along the AUV transect in the assimilation. An overview of the
adaptive sampling method is given in Algorithm 1.

Algorithm 1 Adaptive Sampling method

Initialize GP model (Chapter 5)
while running do
Select new waypoint using (6.1)
Travel to new waypoint and collect observations
if waypoint is reached then
Update GP model with observations using (4.22)
end if
end while

6.3 Simulation Study: Static example

The first simulation study considers a static example. In this example, the transition
matrix A; from equation (4.22) is an identity matrix so that X;y; = X;. Hence,
the field is not moved with the currents and observations through sampling is the
only thing affecting the updated field.

Data from DREAM was used to train the GP, and to create the prior mean
o and covariance X as descried in Chapter 5. For simplicity, only a small area
around the seafill was considered (2560 m x 1280 m) and the area was divided into
a regular grid with grid cells of size 32 m x 32 m. Also, in this initial simulation
only one depth layer was considered at ~ 15 m depth, but this could be expanded
to 3 dimension considering multiple snapshots in different depth layers. Figure 6.1
shows the bathymetry of the fjord and the selected area as a red rectangle. From
the training data it was observed that the distribution of particles in the location of
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Figure 6.1: Plot of the bathymetry of Fraenfjorden. The red rectangle shows the
selected area, and the red dot indicates the location of the seafill.

the seafill was rapidly changing and had very little correlation with the neighboring
sites. Thus, this location was disregarded in our model. When plotting the results,
this was handled by setting the variance to 0 in the location, and using the true
value from the test data as the mean.

The spatial model and the sampling method was implemented using the lan-
guage R [63], and test data from DREAM (April 2nd) was used as sensor readings
for the AUV. Hence, for this simulation we consider the test data from DREAM to
be the true distribution at all time. The time steps was discretized into intervals of
5 minutes. A total of 54 updates were simulated, which corresponds to monitoring
the outlets for 4.5 hours (270 minutes).

The results of the simulation study is shown in Figure 6.2, showing results at
four different time steps. The particle concentration is measured in pg/L
(log(concentration) is not used in this study), and the color bar shows the intensity
at each location. The x-and y-axis shows the distance in metres from the seafill.
The first column of plots shows to the true values from DREAM. The predicted
particle concentration is shown in the second column, and the third column shows
the prediction variance together with the path of the AUV showing the 10 most
recent sampling locations as small white dots and the current position of the AUV
as a large white dot.

Comparing the predicted particle concentration with the truth from the test
data it can be seen that the sampling method generally gives a smooth prediction
that coincides quite well with our "true" distribution. Still, many of the finer details
are overlooked, and more samples are needed to model these details.

Considering the path of the AUV together with the prediction variance, it can
be seen that the variance is decreased near the recently sampled locations. The
increase in variance proportional to the prior variance can also be clearly seen in
the prediction variance plots.

The objective function controls the AUV path in an intuitive way, leading it to
unexplored areas on the one hand, and in most cases assuring a reasonable travel
speed for the AUV between sampling locations. The travel distance of the AUV
lies between 100-300 metres for most time steps, which is a suitable distance given
the time step length and the AUV speed. Still, the method sometimes results in
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Figure 6.2: Results of the simulation study at four different time steps t =
0, 18,36, 54 corresponding to [0,90,180, 270] minutes. The particle concentration
is measured in pg/L, and the color bar shows the intensity at each location. The
z- and y-axis shows the distance in metres from the seafill. The first column of
plots corresponds to the true values (a),(d),(g) and (j). The predicted mean par-
ticle concentration is shown in the second column (b), (e), (h) and (k), and the
third column corresponds to the prediction variance (c), (f), (i) and(l). The path
of the AUV is plotted as a red line, the small white dots shows the 10 most recent
sampling locations and the large dot indicates the current position of the AUV.

the AUV taking too large steps, a clear example can be seen in (f). A possible
improvement could be obtained by better tuning of the parameters 6, but this
would only help to a certain degree. Perhaps a better idea for future work would
be to add constraints to the travel length of the AUV when doing path planning.

Another issue with the model, is that it does not seem to keep up with the rapid
dynamics of the ocean process. Since the model relies on the observations from the
AUV to capture the change in the particle concentration, the prediction results
far from recently sampled locations will be inaccurate. When the dynamics of the
particle transportation are fast, we will get a delay in the updating of the model.
As an example, the prediction results in the upper left area can be considered. At
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t=18, the prediction in this area shows a smaller concentration than the true value.
Then at t=36, the predicted concentration has increased in this area, but in the
true model the particles have moved resulting in a low density. Finally, at t=54 the
predicted and the true value is quite similar. This example shows the delay in the
predicted values. And this clearly shows the need for a temporal model onboard
the AUV, which is explored in the following simulation study.

6.4 Simulation Study: Dynamic example

We now present a simulation study including the whole spatio-temporal model
presnted in chapters 4 and 6. This model is compared with four simpler strategies.
We vary both the process model and the sampling strategy. The temporal model
based on the advection-diffusion SPDE is compared to a stationary process model
where the next time step is equal to the previous time step, as in the previous sim-
ulation study. Different sampling strategies are tested using the sampling strategy
based on the suggested objective function, a predefined sampling strategy following
a lawnmower pattern and a method that uses only the SPDE model with no sam-
pling. For the strategy using the objective function we choose the travel distance
restrictions dp;n = 180 meters and dpax = 220 meters and set the time between
each sample to be 5 minutes. This gives a suitable travel speed for the AUV, and
a constant time step simplifies the updating of the temporal model. When using
the lawnmower pattern, the distance between each sampling location is set to 200
meters and the same time step of 5 minutes is used. An overview of the different
strategies can be seen in Table 6.1.

Ocean model data from two consecutive days, 1st and 2nd of April 2013, is
used in the simulation study. The data from 1st of April is used to train the SPDE
parameters as described in Chapter 5. Data from 2nd of April is used as the test
data meaning that the predicted field on the 2nd of April is our ground truth and
the field where observations (samples) are drawn from. We use realizations of the
GP prior as the initial belief and run 100 replicate runs with the presented sampling
methods in Table 6.1. We set the measurement error standard deviation 7 = 0.5
log(ppb). We simulate for a total of 6 hours aiming to map the field on 2nd of April
from 15:00 to 21:00.

6.4.1 Results and discussion

In this section we present results from the simulation study and discuss the per-
formance of the methods.

Performance measures

To evaluate the different methods, three performance measures are studied. The
mean absolute error (MAE) is computed as the mean of the absolute error between
the predicted concentration g, and the true field from DREAM (2nd of April) for
all the grid cells and time steps. The mean standard deviation (MSD) is computed
similarly, but then focusing on the standard deviation in the proxy model in all grid
cells at all time steps. Lastly, we compute the mean objective value (see equation
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Table 6.1: Overview of the 5 methods used for comparison in the simulation study.

Method Process model Sampling Strategy
SPDE-Obj SPDE Objective
SPDE-Lawn SPDE Lawnmower
SPDE SPDE No sampling
Obj Stationary Objective
Lawn Stationary Lawnmower

(6.1)) (MO) in all grid cells at every time step. Table 6.2 shows these performance
measures computed as the mean over the total time steps. Figure 6.3 shows how
the mean objective value (MO) (see equation (6.1)) evolves through time, plotting
the mean value for every time step.

Considering the MAE values in Table 6.2, we see that SPDE-Obj has the best
performance in this case. The inclusion of a non-stationary process model increases
the performance of the method, as this is the case using both the Obj sampling
strategy and the Lawn sampling strategy. The objective function also increases
the performance of the method compared to the pre-planned lawnmower strategy.
Considering the MSD and MO measures, the SPDE method stands out with sig-
nificantly higher values compared to the other methods. This is due to the method
doing no sampling at all, and hence there is no way for this method to decrease the
proxy models” variance, both affecting the standard deviation and the objective
values.

The effect of increasing variance with no sampling, can also be seen in Figure
6.3. Again, the SPDE method stands out with steadily increasing values while the
other methods stabilize at a mean objective value between 200 and 300. For both
lawnmower methods (SPDE-Lawn and Lawn) periodical fluctuations in the objec-
tive function can be observed. This occurs when the sampling is done close to the
east end of the survey area where the assimilation with new data affects a smaller
part of the modeled field compared to adding information in the center. Gener-
ally, the Obj and SPDE-Obj methods have a lower overall mean objective function
compared with the other methods, indicating an intelligent sampling design.

Sampling design and field predictions

Figure 6.4 shows the AUV path and waypoints for the different sampling strategies
plotted on top of the standard deviation at every hour of the simulation study. The
same lawnmower pattern is used for both SPDE-Lawn and Lawn and can be seen
in the first column of the figure. The path chosen by the Obj and the SPDE-Obj
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Table 6.2: Performance measures for the five methods. The table shows the mean
absolute error (MAE), the mean standard deviation (MSD) and the mean objective
function value (MO).

Method MAE MSD MO
SPDE-Obj 0.76 2.38 209.3
SPDE-Lawn 0.87 2.67 272.8
SPDE 1.11 4.70 848.1
Obj 0.85 2.52 230.2
Lawn 0.99 2.67 280.5
— Lawn
Obj
SPDE
—— SPDEOb]j
SPDELawn
1500
1250
1000
o]
= 750

500
250

5 1 17 18 19 20 21
Time
Figure 6.3: The mean objective value (MO) (see equation (6.1) computed over all
the grid cells for each of the methods.

method can be seen in respectively the second and third column. All of the methods
cover the area quite well, but both Obj and SPDE-Obj focus on the eastern area.
This region is closer to the outlet and the true mine tailings distribution (seen in
the first column of Figure 6.6) shows elevated concentrations in this area. Hence,
more frequent sampling here is expected because of the proposed objective function
(see equation (6.1)).

Figure 6.5 gives insight on how the GP methods behave, showing the distri-
bution in one single grid cell over time using SPDE-Obj. The blue line shows the
method “s mean value, the green line is the true value and the two red dotted lines
are the 95% confidence interval. The point we are considering is located 340 meters
east and 200 meters north in the survey area. When sampling and assimilation is
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Figure 6.4: Hourly plot of the model standard deviation at the given time together
with the path for the different sampling strategies up until that time. The blue dot
shows the starting point of the path and the yellow is the sampling location at the
current time. The arrow indicates the direction of the AUV.

done close to this point we see a reduction in the confidence interval and the mean
value tends to be corrected towards the true value.

In Figure 6.6 we focus on the two methods Obj and SPDE-Obj. The updated
model mean for every hour is plotted in column 2 and 3, and the true field (the
field where the observations are drawn from) can be seen in the first column.
Comparing the methods with the true field, they both capture the trend quite
well. This figure illustrates an important difference between the two methods; the
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Figure 6.5: The distribution in one single grid cell using the SPDE-Obj method.

Showing mean (blue line) and 95% confidence interval (red dotted lines) together

with the true value (green line).

Obj method, because of its stationary process model, keeps the structure from the
GP prior in the beginning throughout the whole mission, relying on observations
to change its predicted field. This is not the case with SPDE-Obj which has a non-
stationary process model that moves the field with the currents. Although data
from two different days are used as training and test data, both datasets are from
the same ocean models. This may cause the comparison with ground-truth to be
optimistic. Still, based on the simulation results, it is reasonable to assume that
SPDE-Obj is able to map the field quite well. Studies from simulations not included
in this paper have shown that the performance of the SPDE-Obj compared with
simpler strategies is improved with increasing survey area, showing the utility of
an adaptive method for a large area survey.

Adaptive vs. pre-planned designs

We now give an example comparing an the adaptive approach (SPDEODj) with a
pre-planned method (SPDELawn) (see Figure 6.7). The example shows the pre-
dicted results at the end of a mission run of total 5 hours. The true field is seen in
Figure 6.7a. Figures 6.7b and 6.7c show the model mean and variance for the adap-
tive approach, and figures 6.7d and 6.7e present the model state for the pre-planned
approach. The AUV path describing the sampling design for one hour before the
end time is shown in the variance plots.

In the example, the adaptive approach gives a better estimate of the true field
than the pre-planned method. From the true field, we observe increased concen-
trations on the eastern side. The adaptive approach captures this information, and
because of elevated values in the area, continues to investigate the eastern side.
The pre-planned lawnmower approach, on the other hand, is set to sample in the
western area at the time, and the samples taken are not as informative. Adaptive
approaches excel when conditions are not as expected. In such cases, the flexibility
of an adaptive approach is beneficial since the sampling design is automatically
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Figure 6.6: Hourly plot of the "true" value together with the model mean value for
the Obj and SPDE-Obj method.

adjusted. A pre-planned approach will always stick to the pre-scripted sampling

design.

6.5 Closing remarks

Two simulation studies are presented in this chapter. Both utilizes the suggested
objective function for waypoint selection. The static simulation study reconstructs
the true field quite well. Still, the temporal variability of the particle transporting
was faster than the AUV could keep up with, indicating that more samples or

5
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Figure 6.7: Example run comparing a pre-planned approach with an adaptive ap-
proach. The true field after five hours of sampling can be seen in Figure 6.7a. Figures
6.7b and 6.7c show the model mean and variance for the adaptive approach, and
figures 6.7d and 6.7e present the model state for the pre-planned approach. The
AUV path showing the sampling design for one hour before the current time is
shown in the variance plots.

a better temporal model is required. The second simulation study includes the
temporal model. In this example, the method is compared with simpler models and
sampling strategies. It can be seen that the SPDE process model gives improved
prediction results in a dynamic environment, and the sampling strategy using the
suggested objective function performs better than the sampling strategy using a
simpler pre-planned lawnmower design. Although the model simulations are done
only for the Fraenfjorden case, the methods can be generalized for other cases as
well. The method can both explore an area and focus on hot spot areas, and the
balance between exploration/exploitation can be tuned using the parameters in the
objection function. Hence, the method will apply to various other sampling cases.
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Chapter 7

Excursion sets

When mine tailings are deposited in a fjord, the contamination must be monitored
to predict reasonably that the environmental damage is below a critical level. In
the previous chapter, the sampling strategy focused on obtaining the best possible
field estimate of particle concentration near a seafill. In this chapter, the goal is
changed from field estimation to deciding which areas are below and which areas
are above a critical limit.

The monitoring of contaminants must build on a criterion, and we here focus on
mapping spatial regions where the concentration is above a specified critical thresh-
old at the end-time of the considered monitoring interval. This chapter is based on
the results in Paper D. The resulting spatial subdomain with concentrations above
the threshold limit is called an excursion set (ES). The design criterion for effec-
tive monitoring minimizes the expected mis-classification probabilities associated
with the ES. There has recently been interest in studying ESs for environmental
applications: [1, 24] explore extreme precipitation. [7] show an application with air
pollution exceeding the limits set by the European Union. [75] use ESs to study
temperature changes.

Within these modeling assumptions, we develop closed-form solutions for the
expected reduction in mis-classification probabilities and use these to construct
adaptive sampling designs that run in real-time on the AUV. The contribution
extends related work on expected Bernoulli variance reduction [11, 22|, present-
ing an approach applicable to spatio-temporal domains. In doing so, we combine
spatio-temporal GPs, ESs, and AUV technology elements for an environmental ap-
plication. Results are compared with state-of-the-art design approaches, as well as
with simplified statistical models. Field experiments demonstrate the applicability
of the methods for real-world environmental sensing.

7.1 Excursion Set

Let [ be the critical limit of the system. A random ES over the domain D, at time
t' is here defined as

ESt' = {Si c Ds : Xt/ (31‘) > l} (71)
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7. Excursion sets

In this context, ¢’ is a particular time of interest, where one in our case can possibly
take some action to mitigate the concentration level by for instance reducing the
mining deposition rates. This reference time will typically be the latest monitoring
time ¢’ = t,. Note that expression (7.1) defines just one of several kinds of ESs
[7, 8].

Just before time t < t/, assume data )y, 1 is available. The marginal EPs
associated with the ES in equation (3.13) are

EPtl(SZ‘) = P(Xt/(si) > l|y1;t_1), s; € Dy. (72)

From these EPs, the mean mis-classification probability (MMP) is defined by
1N
MMPy = Zmin{l — P(Xp(85) > 1| V1ae1), P(Xp(8:) > 1| V1—1)}. (7.3)
i=1

This MMP is dominated by the probabilities that are near 0.5.

At time ¢, the design question relates to the augmentation of data );.;— 1 with
a random sample Y,¢ according to design d which is highlighted in the notation.
This design must be among the possible designs D; C Dy at that time. In this
chapter, the term design. However, it should be noted that this is comparable to
the selection of sampling waypoint s* from the previous chapter. There are several
strategies for selecting the design. For the optimal design choice at time ¢, one
must in principle consider all possible positions and measurement values for steps
t+1,...,t,. This becomes an intractable optimization problem involving a sequence
of interrelated minimizations and integrals. Instead, we present heuristic methods
considering only the current time step.

We focus here on a myopic strategy that is statistically optimal according to the
expected MMP (EMMP) when assuming that one conducts no more measurements
after time ¢t. The optimal design is then

d; = argming.p, EMMPY,
1 N
EMMPY = / N > min{l = pdy, 3o 1 Vre- 1) dyy (7.4)
Yi i=1
Py = P(Xu(si) > 1| Vi1, 9d),

where p(y|V1.._1) is the probability density function (pdf) of Y;¢, conditioned on
the previous samples V.4 1.

In the spatio-temporal sampling scheme, the choice of design is done conditional
on all data up to time t—1, and the probabilities can be computed for a future time
t', while the expectation is over data at time ¢. The choice d determines the 1 and
0 structure of the design matrix Gy = G¢, where the design is again highlighted in
the superscript. Of course, the available data )., were also gathered according
to a chosen design, but this is ignored in the notation. The only effect of this design
is via the conditioning in the probabilistic model and the current position which
determines the design set D;.
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7.1. Excursion Set

7.1.1 Closed form expressions for EMMP

From the data assimilation expressions (equation (4.22)), we have the predictive
Gaussian distribution for X/ (s;). Moreover, just before time ¢, the predictive distri-
bution for the next observation is Y,4|V1.,—1 ~ N(G%pu, [t—1 Q%). The superscript

d notation is included again to emphasize the dependence on the design.
To facilitate the EMMP calculations in equation (7.4), we introduce variables

d /-
UﬁzM, i=1,...,n. (7.5)
2?’ | t(i’ Z)

Here, uf,‘t(i) is the ith component of the predictive mean and Et,‘t( 1) the ith
diagonal element of the predictive covariance matrix, after the assimilation of Y.,
and the new sample Y;?. The random variable UZ is linearly related to Y;¢ via
ut,‘ ,(i), and it is hence Gaussmn distributed. One can regard this as a transformed
variable of the unknown data outcome at time ¢ for the given design d. Because of
its direct link to the probabilities in equation (7.4), the expression for EMMP is
equivalent to n univariate integrals [6, 11], one for each of UZ, i =1,...,n.
In mathematical terms, the relations in equation (4.22) mean that we have

I —E[ud | (0) [ Visp—1] L= (9)

E[UY | Viit—1] = pta =

E?"t(lﬂ’) E?/H(sz) ,
1
Val“(Uid|y1;t71) = Uid = di,Var Mt’ \t( |y1t 1)
LRG0 .
_ b e d vt d '
- s A KA KT,

where (i, ) indicates row i of the matrix. We let p(u¢) denote the Gaussian pdf with
mean and variance defined in equation (7.6). The EMMP in equation (7.4) is then
given by

1 n
EMMP? = - > / min {®(uf), 1 — &(uf)} p(uf)duf ZEMPl o (77)
i=1"%

where EMPzt, is the expected mis-classification probability in position s;. More-

d
over, ®(uf) = P(Z < uf) = [" p(2)dz represents the cumulative distribution
function (cdf) of a standard normal variable Z. By symmetry 1 — ®(u;) = ®(—u;),
and since ® is monotonically increasing, the integral over u; can be split in two
parts;

0 00

EMPY = [ a(udpuddul + [ o(-ulplud)duf (78)

—00 0
Defining Z and U¢ to be independent, so that p(z)p(u?) is their joint density
function, we get

/_0 (uf)p(uf)duf _/ / Hdzdul = P(Z < UL, U < 0).  (7.9)
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7. Excursion sets

By the same argument for the second integral in equation (7.8), we have

EMP¢ = P(Z<U!LU<0)+ P(Z< -ULUL>0)
= P(Z-Uf<0,Ul<0)+P(Z+Ul<0,-Ul<0). (7.10)

The bivariate distributions of Z and U are used next. For the first term

7z -Ug — [y o, +1 —d?,
d d d ug d g g
= No(pl*, 1), pl’ = c = e
Ud P —0% 0L
(7.11)

and a similar expression holds for the second term in equation (7.10). We then get
EMP{ = @ (ul*, =) + @, (—pi, =) | (7.12)

where @, is the bivariate cdf evaluated at 0 = (0, 0)7.

7.2 Simulation study

7.2.1 Case description

In this simulation study we mimic a situation with large discharge from location
marked 1.2 in Figure 1.4. The outlets of mine tailings happen at depth 20 m. A
2-dimensional regular rectangular spatial grid is formed at this depth for the inner
part of the fjord. The domain has n. = 44 grid nodes in the east-west direction and
n, = 22 nodes in the north-south direction, so n = 968. There are approximately
20 m between each grid node in both directions. In simulations, we use 1 minute
time steps in a 30 minute interval of interest, just before low tide.

Table 7.1: Description of the different sampling design strategies. Bottom two rows
differ in terms of modeling.

Case Description

SPDE: EMMPy,, Minimizing EMMP within local waypoint graph designs and at future time ¢, .
SPDE: EMMP; Minimizing EMMP within local waypoint graph designs and at current time ¢.
SPDE: Hybrid Blend of random transects and SPDE: EMMP; at time t.

SPDE: Random Choose randomly within local waypoint graph designs at each time ¢.

SPDE: EP; 0.5 Choose local waypoint graph designs with EP closest to 0.5 at current time ¢.
SPDE: Pre-diag Sample selected pre-scripted diagonal transects design, with no adaptation.
SPDE: Pre-lawn Sample along a lawn-mower pre-scripted design, with no adaptation.

AR(1): EMMPy,, Same as SPDE: EMMP;,, , but with a spatial AR(1) model.

Spatial: EMMP Same as SPDE: EMMPy, but with only spatial variability and no time dynamics.

To gain insight in the statistical properties of methods, we use 1000 replicate
realizations of the fitted SPDE model, and go through with the presented sampling
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7.2.  Simulation study

strategies (Table 7.1) for each replicate run. We set the measurement error standard
deviation to 7 = 0.316 log(ppb). At every time step, m = 1 data sample is followed
by model updating. The ES at time step ¢, = 30 is of main interest. The critical
concentration limit is set to I = 8.5 log(ppb), but note that this limit will vary
from the operational objective.

7.2.2 Performance measures

The main design criterion is the EMMP, and it is natural to compare results
based on the realized MMP. After each replicate run with its sampling path and
data V1., we hence compute %2?21 min{l — P(Xy, (s;) > 1| V1, ) P(Xin(s:) >
1| V1.1,,)}. Further, actual mis-classification rates for the predictions can be cal-
culated based on the final predictions and the true ES at time t¢,,. A probability
cutoff of 0.5 is used for EP;, , and the average mis-classification rate for a replicate
run is then £ 3" | I (I(EPy, (s;) > 0.5) # ES;, (s;)), where ES;, (s;) is the actual
indicator variable of the ES for location s; at time t,,.

We also compare how well the concentration prediction at time step t,, matches
the actual concentration at that time. This is done via the mean squared error
(MSE), averaged over all sites and for the 1000 replicates.

The various strategies demand different amounts of calculations. In a real-world
operation, the AUV stops to do calculations for a short while at a waypoint, but this
time should not be significant compared with the time used between waypoints.
We study the approximate computation times for obtaining one sampling path
with each strategy using a MacBook Pro 2015 laptop with i5 core. This is not an
unrealistic comparison with the computing resources on board the AUV, where the
embedded system is operating on a NVIDIA Jetson TX1 single board computer.

7.2.3 Results

We first compare the strategies based on using only the next time step (¢’ = t) and
that of always predicting to the end point (¢’ = t,,). We denote results of these two
by {SPDE: EMMP,} and {SPDE: EMMP; }, respectively. The second approach
which is using the SPDE model all the way to n is more realistic, but the approach
is still only myopic in the strategic selection, and there might not be significant
gains in the results.

Figure 7.1 displays example sampling paths made by these two different adap-
tive strategies (¢, middle, ¢ bottom) for two replicates (left, right). The paths are
sketched on the final step EPs, which are conditional on all the sampled data in
that run. The true ES; is also shown (top). In the leftmost replicate, neither
{SPDE: EMMP,, } nor {SPDE: EMMP;,} strategies are able to map all parts of
the ES, but they both map the western part well. In the rightmost display they
cover a larger part of the domain and predict the true ES more accurately. Dis-
play (d) shows that the end strategy maps the northern part well, but misses the
south-eastern part. It is the other way around for the strategy only predicting one
step (Display (f)).

Results of course vary over replicates. Table 7.2 shows that the mis-classification
and MSE measures are about the same for the two methods when we average over
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Figure 7.1: Final simulated AUV paths for two replicates and the two test cases
{SPDE: EMMP;_} and {SPDE: EMMP,}. The paths are displayed together with
the final EPs. The true ES at time step ¢, is in the top row.
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the 1000 replicates. The slight improvement of using {SPDE: EMMP, } seems
insignificant, especially so considering the ten-fold increase in computer time when
doing the forward prediction in equation (4.22). It hence seems reasonable to use
just time ¢ in this kind of adaptive strategies.

Table 7.2: Comparison of different sampling design strategies. Bottom row shows
results of the AR(1) and spatial model, all others use the SPDE model.

Test case Mean MMP Mean mis-class.rate Mean MSE Comp time
SPDE: EMMP, 0.104 0.103 0.273 40s
SPDE: EMMP, 0.103 0.105 0.276 3s

SPDE: Hybrid 0.097 0.099 0.224 4s
SPDE: Random 0.131 0.131 0.316 0.1s
SPDE: EP; 0.5 0.115 0.119 0.331 2s
SPDE: Pre-diag 0.095 0.097 0.165 -
SPDE: Pre-lawn 0.118 0.119 0.232 -
AR(1): EMMP,, 0.132 0.135 0.482 8s
Spatial: EMMP 0.112 0.140 0.486 1.5s

As indicated in Figure 7.1, the strategies are sometimes missing parts of the
ES when the ES is divided into two or more separate regions. The one step ahead
strategies prioritize designs with high immediate reward, in the form of reduced
EMMP. With the hybrid strategy the AUV can more easily move across such
low-reward domains. Table 7.2 shows that this strategy has somewhat reduced
mis-classification rates, at the cost of slightly larger computing time. Because the
hybrid strategy tends to explore more of the domain, the MSE gets smaller.

We next compare results with that of simpler strategies choosing the next de-
sign at random or via the local waypoint with EP closest to 0.5. Paths for the same
replicates are shown in Figure 7.2. The AUV movements are clearly different, but
the {SPDE: EP; 0.5} strategy tries to explore the domain in a similar fashion to
the myopic EMMP strategy, without really succeeding to the same extent because
there is no expected reduction involved in its computations. Replicate results sum-
marized in Table 7.2 show that the MMPs and MSE are clearly larger for both
these strategies.

Now consider the two designs using pre-scripted plans (Figure 7.3). Table 7.2
shows that the lawn-mower design {SPDE: Pre-lawn} gives larger mis-classification
rates than strategies {SPDE: EMMP, } and {SPDE: EMMP,}, while using the
diagonal design {SPDE: Pre-diag} gives lower mis-classification rates, on par or
even better than the adaptive strategies. Guided by preliminary runs, this path is
chosen to explore as much of the interesting domain as possible within the time
restrictions. Since the ES is often divided into separate parts, which are rarely
discovered using the myopic EMMP strategy, the {SPDE: Pre-diag} design has
an advantage. The big areas are usually discovered, though some details might

61



7. Excursion sets

Example paths

62.847- 62.847-
62.846- 62.846-
] 1 Log(ppb) > 8.5 3 Log(ppb) > 8.5
=] =]
£ 62.845- M Fause £ 62.845- M FAse
3 TRUE 3 TRUE
62.844- 62.844-
62.843- _ . ! ! ) 62.843- _ . ; ! ;
7.120 7.125 7.130 7.135 7.120 7.125 7.130 7.135
Longitude Longitude
(a) ESq,, for replicate 1. (b) ESy,, for replicate 2.
62.847- 62.847-
EP EP
62.846- 1.00 62.846- 1.00
() (]
2 075 3 0.75
£ 62.845- 0.50 £ 62.845- 0.50
- -
0.25 0.25
62.844- 0.00 62.844- 0.00
62.843- _ . ) . . 62.843- _ . ) . .
7.120 7.125 7.130 7.135 7.120 7.125 7.130 7.135
Longitude Longitude

(c) Final path for replicate 1 using test case (d) Final path for replicate 2 using test

{SPDE: EP,0.5}. case {SPDE: EP;0.5}.

62.847 - 62.847 -

EP EP

62.846- 1.00 62.846- 1.00
(] ()
! 075 3 0.75
£ 62.845- 0.50 £ 62.845- 0.50
- , 0.25 - i 0.25

62.844- 0.00 62.844- 0.00

62.843- : : : : 62.843- . . . .

7.120 7.125 7.130 7.135 7.120 7.125 7.130 7.135
Longitude Longitude

(e) Final path for replicate 1 using test case (f) Final path for replicate 2 using test case
{SPDE: Random}. {SPDE: Random}.

Figure 7.2: Final simulated paths for two sampled replicates and the two test cases
{SPDE: EP, 0.5} and {SPDE: Random}. The paths are displayed together with
the final EPs. The true ES at time step ¢, is in the top row.
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be missing, and hence the MSE is small both for {SPDE: Pre-diag} and {SPDE:
Pre-lawn}. The EMMP criterion is developed to reduce the probability of mis-
classification with respect to ESs, and prediction of concentration at positions
where it is certain to be above or below the critical limit of the ES does not help
classification. Thus, it is expected that strategies with paths covering more of the
domain result in smaller MSEs.

Table 7.2 further shows results of using the EMMP strategies on mis-specified
models (AR(1) and spatial model with no temporal dynamical model). The mis-
classification rates are clearly larger here, and so are the MSEs, meaning that the
strategies now get stuck in regions in space and time that are not really of main
interest.

We further tested the strategies under different inputs, in particular the ad-
vection strength. When drift speed is low, both {SPDE: Pre-diag} and {SPDE:
Hybrid} have a mis-classification rate of 10.7 %. For high advection, the {SPDE:
Hybrid} strategy has average mis-classification rate of 9.4 %, which is lower than
the 9.6 % of the {SPDE: Pre-diag}. Recall that this pre-scripted path is designed
to move across the areas with much prior uncertainty with respect to the reference
model. When the advection field is changed, these positions no longer capture the
same degree of information. More sensitivity studies are conducted in [19].

7.3 Closing remarks

In this chapter, a second adaptive sampling strategy based on reducing the mis-
classification probabilities of the excursions sets of high and low concentration
levels has been explored. Simulation results show that a hybrid strategy using
a myopic approach combined with a random detour is performing better than
naive strategies. Also, the careful spatio-temporal modeling provides more accurate
results than simpler spatial or autoregressive models.
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Example paths
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Figure 7.3: Final simulated paths of {SPDE: Pre-diagonals} and {SPDE: Pre-lawn}
for two replicates. The paths are displayed together with the final EPs. The true
ES at time step n is in the top row.
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Chapter 8

Multiple AUVs

If you want to do a few small
things right, do them yourself. If
you want to do great things and
make a big impact, learn to
delegate.

John C. Maxwell

Until now, the focus has been on adaptive sampling methods using a single
AUV. In this chapter, which is based on paper E, multiple AUVs are introduced.
By utilizing more than one vehicle, it is possible to collect more samples, the field
estimation can be done more efficiently, and a larger area can be covered. John
C. Maxwell said, "If you want to do a few small things right, do them yourself. If
you want to do great things and make a big impact, learn to delegate." Although
this quote is about leadership, parallels can be drawn to ocean sampling features.
By using multiple vehicles, increased areas can be covered. Furthermore, similar
to delegating workforces as a leader, where coordination and clear communication
are essential, the same applies to using multiple vehicles efficiently.

According to [52], three main issues underline a multi-robot sampling problem
such as this:

1. How can the sampling area be divided efficiently?

2. How can the density distribution be estimated through efficient data fusion
when robots collect measurements in parallel?

3. How can the computation and communication burden be distributed effi-
ciently amongst the many robots used?

This chapter suggests solutions to these questions for a multi-robot field estimation
problem in communication-constrained environments such as the ocean.

When multiple vehicles are involved in mapping the field of interest, they often
operate in some kind of formation [3]|. This is explored in [36] which uses a fleet
of AUVs where one vehicle is designated as a virtual leader to track the desired
predefined path while providing other vehicles with a moving reference. [59] use two
AUVs to collaboratively monitor the temperature field (thermocline) to capture the
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presence of internal waves where one AUV autonomously trailed the leader AUV.
These lead-and-follow behaviors seem especially useful when tracking fronts and
for gradient estimation. However, when doing field estimation, exploration of the
total area is essential, and we want the AUVs to cover a larger area. Thus, a better
idea might be partitioning the sampling area into multiple regions so that each
AUV has an assigned region. Another benefit of partitioning is the possibility of
computational efficiency. When each AUV has a designated operational area, a
smaller model representing only this area can run onboard instead of a complete
model. Also, the risk of collision between vehicles is minimal since all vehicles have
designated areas.

We aim to divide the sampling area to distribute the sampling-workload of each
vehicle evenly. Typically, some regions will be more informative than others, and
an objective function is used to evaluate this informativeness at all times during
a mission. We use a method based on weighted Voronoi partitions to repeatedly
divide the survey area into regions using the objective function as an information
criterion. Each AUV is responsible for its own region and performs adaptive sam-
pling within this area. In other words, we focus on a decentralized approach and
thus avoid having "a single critical point of failure"; If one vehicle fails, the mission
would still be running, and samples would be collected by the remaining vehicles.
The use of Voronoi partitions and repartitioning is previously explored in both [35]
and [16]. [35] perform repeated weighted Voronoi partitioning based on entropy
as the information criterion. The repartitioning is done between all AUVs during
a surfacing event. [16] propose a load-balancing algorithm and performs reparti-
tioning when robots are within communication range. In this work, we build on
elements from both of these papers. Instead of entropy, we use an objective func-
tion incorporating variances and hot-spots as the basis for re-weighted Voronoi
partitions. We do the repartitioning only when vehicles are within communication
range to avoid waiting time at the surface. When two or more vehicles are within
communication range, acoustic communication can be used to trigger a surfacing
event. The vehicles share their models and update their onboard field estimates
at the surface, given the knowledge retrieved from the other AUV(s). Each AUV
runs an onboard spatio-temporal GP model representing the environmental field.
In this work, we experiment with different sizes for this proxy model. A full on-
board model representing the entire environmental field is the most informative
but requires more computing resources than smaller models.

The main novel contributions of this chapter are:

e Propose a repartitioning method based on weighted Voronoi partitions to

obtain an even sampling workload for dynamic field estimation.

e Formalize how data fusion can be done when sharing GP model data.

e Provide simulation studies showing how the method performs with varying
numbers of AUVs and depending on the size of the onboard model.

8.1 Partitioning and sharing

Having defined the individual onboard model for each AUV in the previous chap-
ters, we now connect multiple vehicles. Assume we have & AUVs that all run an
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o 250 500 750 1000 1250 1500 1750 2000

Figure 8.1: Example of Voronoi partitions. The domain D is divided into 5 regions
decided by the seeds shown as red dots. Each region contains all the points which
are closer to the region ’s seed than to any other seed.

onboard proxy model. The survey area is divided into k regions, and each AUV is
designated to its one region. We next describe the details on the partitioning into
regions, how the AUVs communicate and share model data. At the start of the
mission, an initial partitioning is found via the start location of the AUVs. As the
mission proceeds, the regions are repartitioned to even out the sampling workload
of the vehicles as the models are updated with observations and through sharing.

8.1.1 Initial partitioning

To divide the survey area into regions, we use Voronoi diagrams. Voronoi partitions
are a commonly used approach to separate a space into nonoverlapping regions
based on the "nearness" concept [81]. The use of Voronoi partitions is motivated
by the speed and range constraints of the AUV. When using the location of the
AUVs as the seeds, Voronoi partitions divide the domain into regions so that all
the points in one region are closer to the AUV in that region than to any other
AUV.

Given our survey area D and k points in the set of seeds S = {s1,..., 8}, the
Voronoi partition D; associated with the point s; € S is defined as

D;={se€D;||s —s;|| <||s—s||Vs; #s; € S}. (8.1)

In other words, the partition D; contains all the points which are closer to the
seed s; than to any other seed s; € S. Figure 8.1 shows an example of Voronoi
partitions. Each region D; gives a hard constraint on where AUV r; is allowed to
navigate and sample. To find the initial regions, the starting positions of the AUVs
Sy = {Spys...,8r,} are used as seeds. It is assumed that all the AUVs know the
starting positions of each other, and hence know the configuration of the initial
Voronoi partitions for the whole survey area D. Figure 8.1 shows an example of
an initial partitioning for £ = 5. The red dots in the display represent the starting
positions of the AUVs, and the different regions are represented in different colors.
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8. Multiple AUVs

We extend the notation to clarify that each AUV r; runs an onboard proxy
model as described in Section 2. State variable X} represents the concentration
for AUV 7, where we at time ¢t have X}|Z] ~ N(u, Xi). Here, observation set
Z} = (Y{,...,Y/) entails all data gathered or shared with AUV r; up until time
t. When initial partitioning is done, the AUVs initialize the GP model associated
with their region; which is all the grid cells in the region D; together with the grid
cells in a certain radius rqis; outside the region (see Figure 8.2a). We denote the
set of grid cells in the model of r; as D; ,,,.,. This extra set of grid cells outside the
AUVs designated region is added because we consider a dynamic problem and have
a temporal model with flow of particles coming from the outside of the regions. In
the simulation study we experiment with different values for rgis;. An illustration
of the boundaries for two AUVs is provided in Figure 8.2.

= 7aist o SED; .,
® 5 Dirg. * SEC [Dl.i‘d;\‘ U D]#‘diq]
=== Pt ® sc Djardist
° °
° [ ]
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[ [ )
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(a) Ilustration of the grid cells repre- (b) Illustration of the shared grid cells
sented by the onboard model. The fig- between r; and r; (seen as dots with two
ure shows the grid cells as green dots for colors). Only this area is shared and up-
AUV r; given T dist- dated when the vehicles surface.

Figure 8.2: Illustration of the operation boundaries and communication range of
two AUVs.

8.1.2 Communication

Communication between multiple vehicles is essential, so that they are able to share
model data and repartition their regions to obtain an even sampling workload. In
practice, there are two methods of communication between AUVs [34].

1. The AUVs come to the surface and share information e.g. using radio com-
munication.

2. The AUVs attempt to share information using acoustic underwater commu-

nications.

Acoustic communication requires a short range between the communicating
AUVs and can incur quite a bit of loss. Because information is more easily shared
and with larger bandwidth at the surface using radio communication, our method
only uses acoustic communication to trigger surfacing events. Information sharing
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and repartitioning is executed at the surface where the robots can communicate
via radio. A surface event is triggered when two or more AUVs are within a prede-
fined communication range C. Denoting the positions of the vehicles at time t as
8%, ..., 8, AUV the vehicles are within communication range when |s}i —s}’| < C,
that is when the Euclidian distance between two vehicles r; and r; is smaller than
the communication range parameter C. When a surfacing event has been triggered
because two or more AUVs are within communication range, information is shared

between them.

8.1.3 Sharing

In the communications, AUVs can share data or models (mean and covariance). In
what follows we focus on sharing the models of the AUVs.

Such sharing is done between two neighbouring AUVs r; and r;. Before sharing,
AUV r; has a Gaussian model with probability density 7 (z;|Z}) while AUV r; has
model 7(x;|Z7). They share and update only the parts of the onboard models that
are common for both AUVs (see Figure 8.2b.) That is, the part of the models that
represent the grid cells in the union D; .., D) ry..- Hence, our goal is to find
the distribution of Xy, given both Z{ and th , with probability density function

denoted by 7 (wt|Z§, Zg ) If there are limitations in the communication capacity,

AUVs can share only a subset part of the new partition (See simulation study in
Section 8.3).

To simplify the notation, we derive the sharing equations for an rgiy much
larger than the dimensions of the survey area. In this case, the onboard model on
every AUV represent all the grid cells in the survey area D; r,., = Dj ryie, a0d we
want to find the probability density m(x:|Z¢, Z7). We write the (before sharing)
conditional mean and covariance for AUV r; by ui‘ , and Eil +» and similarly with
j superscript for AUV r;. When ignoring the normalizing constant, the sought
density can be found by the following expression:

m(xe| 21, Z)) o 7(Z] |y, Z1) (24| Z7). (8.2)

We now assume that the data Zg is conditionally independent of Z}, given
x¢. This means that 7(Z] |z, Z}) = n(Z]|z;). By using Bayes " theorem, we then
obtain

(x| Z{)m (2] |2:)
(2]|2})
o m(@| Z{)m(Z] |20)
(x| Z)
(@)

ﬂ-(mt|ZL Zt]) =

o (x| Z}) (8.3)

where we have used that 7 (x| 27 )7 (Z}) = 7 (a)n(Z7|x;). All densities in expres-
sion (8.3) are Gaussian, so if X; ~ N, (e, X¢), it takes on the form
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where the last expression represent the canonical form of a Gaussian density
with a quadratic part in « and a linear part in .

Now, taking the logarithm and again ignoring the normalizing constant, expres-
sion (8.3) becomes

log(m(x:|Zt, Z]))

1 i i - i 1 j i 1— j
xX — *(mt - #t\t)T[zt\t] 1(113t - Mt\t) - §($t - ,Uf“)T[Ei“] 1(513t - ”Z\t) cee

2
1 _
ot (@ - o) B (@ — pe)
1 i - i - - P q—1, i i 1—1, 7 -
= ith ([Eﬂt] T4+ [Eiu} T DN 1) @+ xf ([Eﬂt] lﬂt\t + [Ei\t] 1#%\1 -3 1I~'4t)
1 i,j1— i,41—1 ij
=— imtT[Et\ﬂ Ya, 4 mtT[Et‘i] 1;14”1. (8.5)

Here, the last expressions are again using the canonical form of the Gaussian
density, and equating the quadratic and linear parts of x; to extract the mean
and covariance matrix. From the last transition in equation (8.5) we then see that
the probability density of the shared field; m(x¢|Z}, Z]), is defined by mean and
covariance:

. . . -~ —1
=i = (=) + (=907 - =)

Hiﬂ = Eiﬂ <[2i|t]7lll’i\t + [Eatrll‘{\t - 2;1“t) : (8.6)

8.1.4 Repartitioning

Since the initial regions are decided by the starting positions of the AUVs, it may
happen that the sampling workload of the vehicles is unbalanced, that is, some
regions may be more information-rich than others. This may also change during
the mission because new information is added and because the estimated field is
dynamic. The objective function gives us an indication of which sites are more
interesting than others at any time ¢. If the sum of the objective values in a region
is high, it means that there is a lot to explore in that area, and there are possibly
benefits to gain by sharing some of this workload with an AUV which detects less
interesting elements in its subdomain.

We define the sampling workload of AUV r; at time ¢, as the objective function
summed over all grid cells in the region D;;

0; = Z fi(s). (8.7)

seD;
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If the relative difference between the sampling workloads for two or more neigh-
bouring AUVs is larger than some threshold Obj;},cs, i-€.

0; — 0}

———— > ODbjinres 8.8
3] +Oi Jth ( )

then the united area between the AUVs r? and r/ is repartitioned. To find the
seeds of the new Voronoi partitions, the center of mass (COM) with regard to the

objective function is computed. We denote this as s& = (Sc....» SCuown )s and it is
given by
5 . ZseDi fe(s)se
Ceast N~ £ (o)
D SR APy
C Ten fi9s 59
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The repartitioning is done according to Algorithm 2. The repartitioning is done
repeatedly until the objective differences are all below the objective threshold or
until a maximum number of repartitions is reached.

Algorithm 2 Repartitioning

Compute the objective difference (8.8)
while Objective difference >Obj,; .., Or max iterations is reached do
for All AUVs at the surface do
Compute center of mass s&, (8.9)
end for
Find new Voronoi diagrams using s as the new seeds
Compute objective difference (8.8) given the new regions
end while

8.2 Summary of the suggested approach and Algorithm

We provide an overview of the method via pseudocode as in Algorithm 3. At the
beginning of a deployment, all k& AUVs are positioned in starting locations which
are known for all AUVs and the survey area is divided into regions as described in
Section 8.1.

The sampling method outlined in Chapter 6 is executed onboard each AUV.
This starts out either with the initial Gaussian model or with the latest updated
Gaussian model. Then each AUV performs adaptive sampling in its individual do-
main defined by the previous Voronoi partition. Waypoints are selected repeatedly,
in an adaptive manner, and the onboard model of the AUV is updated with new
information gathered by that AUV. The updating is done when the waypoint is
reached using data from observation taken every 25th meter of the AUV transect.

If two or more AUVs are within communication range and the time since these
vehicles previously shared information is longer than a specified time threshold,

71



8. Multiple AUVs

a surface event is triggered. The vehicles within communication range will then
surface and share information as described in Section 8.1. After information is
shared, the AUVs check if the sampling workload is uneven. If this is the case, they
repartition their unified area as detailed in Section 8.1.4.

Algorithm 3 Multi-Robot Adaptive Sampling method

Initialize GP model
while running do
For each of the AUVs
Select new waypoint using (6.1)
Travel to new waypoint and collect observations
if waypoint is reached then
Update GP model with observations according to (4.22)
if vehicles are within communication range then
if time since previous surface event > time threshold then
For communicating subset of the AUVs
Go to surface
Share information and update onboard field predictions according

to (8.6)
Compute workload (8.7)
if Workload is unbalanced (8.8) then

Repartition according to Algorithm 2
end if
end if
end if
end if
end while

8.3 Simulation study

To simulate the particle fields in a coastal area, we define test scenarios using a
spatial 1000 x 750m? grid with 25 meters spacing. We use two test scenarios to
evaluate the performance of the method. The first scenario is static, so no dynamical
models (ocean currents) are included. The second case includes dynamical elements
with a particle field evolving in the spatial domain over a 5-hour period.

For each of the scenarios, we run 50 replicates using randomized starting posi-
tions for the AUVs. We perform the study with the number of AUVs ranging from
1 to 5. For each case of scenario, replicate starting position and number of AUVs,
and compare 4 different strategies. Each case is run for the same amount of time
and a surfacing event is set to last for 2.5 minutes.

An overview of the strategies can be seen in Table 8.1. The Voronoi-constant
strategy does not perform any repartitioning or sharing. The other three strategies
perform sharing and repartitioning during the mission, but the size of the onboard
model and the size of the shared model data varies. Voronoi-full includes the entire
model onboard every AUV, and full model sharing is performed. Voronoi-100 and
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Table 8.1: Overview of the different strategies tested in the simulation study.

Strategy Regions Model Sharing
Voronoi-constant Constant Full Full model
Voronoi-full Repartitioned Full Full model
Voronoi-100 Repartitioned rdist = 100 m rdist = 100 m
Voronoi-200 Repartitioned raist = 200 m Taist = 200 m

Voronoi-200 run local onboard models with an addition of 100 and 200 metres
boundary (rgist = 100 m and rgis¢ = 200 m).

8.3.1 Static scenario

The true static field can be seen in Figure 8.3. In this scenario, the AUVs start
the mission with no prior knowledge. The prior model of particles distribution has
mean po = 5 log (ppb), standard deviation og = 1.7 and a Matern (3/2) correlation
kernel decay parameter ¢ = 0.02.
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Figure 8.3: Test case 1: True stationary particle field.
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8.3.2 Dynamic scenario

The dynamical situation is characterized by the particle field evolving over 5 hours.
The field is initiated with the stationary field from the static scenario. Here, the
dynamical model parameters are trained from ocean current data available from
the ocean model SINMOD [74]. This means that some of the model parameters are
trained, and in doing so we get input to the temporal onboard proxy model. Further,
atmospheric forcing for daily forecast simulations were obtained from NOAA’s
Global Forecast System with 0.5 degree resolution (for large scale model domains)
and from the Norwegian Meteorological Institute’s MetCoOp Ensemble Prediction
System with 2.5 km resolution (for local model domains).

Figure 8.4 shows the true field in the dynamical case. The advection vector
varies with time; first flowing towards south-east (0-2 hours), then flowing mainly
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towards north(2-4 hours), and lastly towards west (4-5 hours). There is clearly
diffusion which is damping the high concentration levels. After 4 hours there are a
large concentration of particles coming from outside the eastern part of the survey
area. This is modeled using Dirichlet boundary condition on the eastern boundary.
The Dirichlet boundary values are given as a priori knowledge in the models.

- B8

¢ 5 W 15 2 3 BN B 0 5 1 15 2 3 B B 0 5 1 15 2 B B B

P33 = =

20 0 20

15 15 15

10 10 10

5 5 5

e b omow ok owoa o4
e b oMow B owoa
e b oMow B owoa

0 0 ]

(a) Distribution after 0 (b) Distribution after 1 (c) Distribution after 2
hours. hours. hours.

b33 = =
20 0 20
15 15 15
10 10 10
5 5 5
0 0 ]

0 5 W 15 2 3 N B 0 5 1 15 2 B B! B 0 5 1 15 2 B B B

R
& ok oN oW B owmom
& ok oN oW B owmom

ot

(d) Distribution after 3 (e) Distribution after 4 (f) Distribution after
hours. hours. hours.

Figure 8.4: Test case 2: True dynamic particle field evolving over a time period of
10 hours.

8.3.3 Results

In this section, we present the results obtained by our proposed strategies for the
two test scenarios. The section is divided into four parts, each discussing the results
for one performance measure.

Root mean square error (RMSE) is a standard metric to evaluate the perfor-
mance of regression models. In our cases, the value indicates how well our method
predicts the underlying field. We compute the RMSE at the end-time of each run,
and the results for both test cases can be seen in Figure 8.5.

Mean standard Deviation (MSD) is computed as the mean standard deviation
in the GP models over all the grid cells at the end-time of the mission. Results can
be seen in Figure 8.6.

Mean objective (MO) is the averaged objective value (6.1) over all grid cells at
the end of the mission. Results at the end-time of the mission are shown in Figure
8.7

Number of surface events is a measure on how many times the vehicles surface
and share model data during one hour of the mission. Every time a surfacing
event is triggered, this value increases by one. The histogram in Figure 8.8 shows
the number of surfacing events during the second hour of the mission for the 50
replicate runs.
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Figure 8.5: RMSE for both test scenarios with error bars showing one standard
error among the 50 replicate runs.
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Figure 8.6: MSD for both test scenario with error bars showing one standard error
among the 50 replicate runs.
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Figure 8.7: MO for both test scenarios with error bars showing one standard error
among the 50 replicate runs.
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Figure 8.8: Number of surfacing events during one hour for the 50 replicate runs.
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Figure 8.9: Example mission from the static scenario with two vehicles.

Finally, we consider the computation time for the different strategies. Table 8.2
shows the computation time of simulating one single AUV when running a mission
including 4 AUVs in total. We show the mean computation time for one hour of
simulation for the 50 replicate runs. This time includes updating of the model, data
sharing and repartitioning. A MacBook Pro 2017 laptop with i5 core was used in
the simulation.

Table 8.2: Computation time of simulation one single AUV for the different strate-
gies when running a mission including 4 AUVs. The computation time shown is
the time taken to simulate 1 hour of the different strategies.

Strategy Computation time (s)
Voronoi-constant 56
Voronoi-full 188
Voronoi-100 75
Voronoi-200 87
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Figure 8.11: Initial distribution for the dynamic example.

Figure 8.9 and 8.10 show selected results of the field estimation for the static
scenario using two and three AUVs. The initial Voronoi partitions are plotted in
displays a) and the partitions at the end of the missions are plotted in b). In
displays ¢) and d) we show the field mean and variance, respectively.

In Figure 8.12 selected steps from the first hours of the dynamic scenario are
presented, for a mission with three AUVs. The initial starting distribution and
regions can be seen in Figure 8.11.

8.4 Discussion

We share some of the key insights from the example cases.

From Figure 8.5 we see that having more vehicles reduce the error. For the
static scenario, the reduction in error seems to decay after 3 AUVs. This is due to
the size of the survey area. Both 4 and 5 AUVs seem to cover much of the area.
On the other hand, we do not observe the same effect for the dynamic case, where
the field changes with time. For this scenario, the error reduction is quite large
also when adding a 4th and 5th AUV. From this RMSE-figure, we further see that
repartitioning gives a better field estimate than having no repartitioning. This is the
case for both scenarios; we see that all the Voronoi methods using repartitioning
give significantly smaller errors than "Voronoi-constant". Having a larger model
(larger value of rqist), clearly improve the results for the dynamic scenario.

Considering the MSD in Figure 8.6 it can again be seen that the number of AUVs
has a decreasing effect on the standard deviation. This is as expected since more
vehicles leads to more samples and hence lower variance. The Voronoi repartitioning
methods substantially reduce the MSD, and the full model sharing gives the best
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8. Multiple AUVs
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8.5. Closing remarks

results. The MO metric, which is a linear combination of MSD and the predicted
mean, show similar behavior to the MSD and RMSE, which is as expected.

Figure 8.8 shows that the number of surfacing events increases with the number
of AUVs in the mission. Because the same communication range (C = 200 meters)
is used for all numbers of AUVs, they are more likely to be within communication
range with other vehicles when more vehicle are in the survey area. The difference
between the static and the dynamic case when it comes to surfacing events seem
to be negligible.

The running time of the onboard model and the sharing and repartitioning are
presented in Table 8.2. The running time of the onboard model increases when a
temporal model is included. This can be seen in the difference between the static
and the dynamic scenario. Also, using larger individual onboard models (larger
values of rqist ) increase the running time significantly. We observe that the Voronoi-
100 and Voronoi-200 use less time than Voronoi-full. Thus, the balance between
performance and running time must be evaluated and rq;st should be selected wisely
depending on the desired performance, the size of the total area and the computer
resources onboard.

Figure 8.12 shows results at selected time steps for a dynamic scenario using
three vehicles and the Voronoi-full strategy. This example illustrates the steps of
the adaptive sampling method. The initial distribution before sampling starts is in
Figure 8.11. After 22 minutes we obtain communication range between two vehicles.
First mode data is shared, and then the regions are repartitioned. This is repeated
after 1 hour and 13 minutes, and we obtain a slight adjustment of the regions.
After 2 hours and 2 minutes two vehicles are again within communication range.
The standard deviation plots show decreasing values, and the values are especially
low close to the AUVS’ positions at the current time. Each repartitioning seems
to even out the area between the AUVs, and when sharing is done, we observe
that the field estimate becomes much smoother at the border between the sharing
vehicles.

Note that the methods are using the same current field, both for building the
dynamic scenario and in the simulation study. In reality the ocean current estimates
will be uncertain and this is a source of error that has not been considered in this
work.

8.5 Closing remarks

In this chapter, adaptive sampling using multiple AUVs has been explored. Weighted
Voronoi partitions are used to find suitable regions for each AUV, with the goal of
obtaining an even sampling workload between the vehicles. Results from simula-
tions have shown that adding extra vehicles and performing control coordination
and sharing between them gives an improved prediction of the underlying field. By
repeatedly repartitioning the sampling regions we obtain a better result compared
to using static regions.
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Chapter 9

Experimental AUV and
implementation

In this third part of the thesis, the focus is on the field experiments in Fraenfjor-
den. This chapter introduces the robotic platform used during the AUV missions.
Technical details of the robotic platform are presented, and a description of the
implementation of the adaptive sampling framework are given.

9.1 L-AUV Harald

The robotic platform in our experiments consisted of a Light AUV from OceanScan
(see Figure 9.1). Some technical specifications are summarized in Table 9.1. The
L-AUV has various physical and environmental sensors (see Table 9.2). This L-
AUV is typically used to collect information for oceanographers, biologists, and
others interested in the physical and chemical properties of the water column.
Real-time information is transmitted through a wireless ethernet network when
on the surface through the Manta modem. Underwater the Manta communicates
through an Evologics USBL communication system.

During the field experiments, the robot often operated without bottom-track.

Specification

Vehicle length 240 cm
Weight in air 32.1 kg
Max operational depth 100 m
Speed 0.5-2m/s

Table 9.1: Technical specifications of L-AUV Harald.

83



9. Experimental AUV and implementation

Figure 9.1: The light AUV (Harald) produced by OceanScan was used in the field
experiments.

Sensors Type

Main CPU AMD Geode LX 800 CPU
IMU Microstrain 3DM-GX4-25
CTD SeaBird SBE 49 FastCAT
Dissolved Oxygen Aanderaa Optode 4831F
FLuorometer WetLabs EcoPuck Triplet

Table 9.2: Description of the sensors onboard L-AUV Harald.

This impacts the accuracy of its navigation precision; hence, frequent surfacing was
implemented in the mission procedures.

The L-AUV is equipped with a Wetlabs EcoPuck sensor measuring total sus-
pended matter (TSM), a measure of optical back-scattering in the form of an at-
tenuation coefficient. The measured sensor values of total suspended matter (TSM)
are an indication of turbidity, and this observation value was used for the assim-
ilation and updating of the GP model. It was converted to a measure of (log)
concentration to adjust the value to our onboard model. This conversion is not
straightforward. Before every mission, a small test run was executed, mapping the
corners of the survey area. During this test run the conversion from the measured
TSM value was decided, by comparing the measured sensors values to the predicted
DREAM concentrations at the time. We also need to determine the uncertainty .
The Wetlabs EcoPuck sensor user manual suggests an attenuation error of about
4% at attenuation coefficient 1 m~!. With concentrations varying between approx-
imately 3 and 8 log(ppb), assuming measurement standard deviation of 4% gives T
between 0.12 and 0.32 log(ppb). However, both navigation errors and vehicle drift
can lead to uncertainty in the sampling location. Hence, we set 7 = 0.5 log(ppb)
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9.2. Implementation

Embedded System
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Figure 9.2: The architecture of the embedded system and the simulator. The Uni-
fied Navigation Environment (DUNE) runs onboard the AUV, and the agent ar-
chitecture T-REX sits on top of this, allowing the embedding of multiple decision
processes such as planning.

for the experiments.

9.2 Implementation

Figure 9.2 shows the layout of the agent architecture used in the experimental sur-
vey. The Unified Navigation Environment (DUNE) [60] runs onboard the AUV and
is used for control, navigation, vehicle supervision, communication, and interaction
with actuators. On top of this sits the agent architecture T-REX (Teleo-Reactive
EXecutive) [64], which enables an adaptive mission. T-REX allows the embedding
of multiple complex decision processes (including planning). The communication
between DUNE and T-REX was handled by the LSTS toolchain [61], which pro-
vides the back-seat driver API to DUNE. This allows external controllers, such
as T-REX, to provide desired tasks for our platform while also receiving progress
updates on the current state. The various sampling algorithms described in the pre-
vious chapters were written as python scripts and were implemented as a reactor in
the T-REX framework. A reactor is a component of T-REX acting as an internal
control loop and is capable of producing goals that the planner integrates into a
series of actions (e.g., Goto and Arrive at). The set of all those actions forms a
plan which was built while ensuring operational constraints of the mission (e.g.,
the vehicle should never dive deeper than a certain depth or leave a defined area.)
The plan is then sent to DUNE, which handles low-level control and execution.

Before deploying the AUV, the integration on the L-AUV was tested in a sim-
ulated environment as similar as possible to our embedded system. In simula-
tions, sensor readings from the AUV were replaced with data from SINMOD and
DREAM, and an AUV simulator in DUNE was used to simulate the behavior of
the AUV. The layout of the simulator is shown in Figure 9.2.
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Chapter 10

Field Experiments

Anything that can go wrong will
go wrong.

Murphy

New challenges will arise when stepping from simulation studies to the actual
field. Murphy’s law states: "Anything that can go wrong will go wrong." In our
case, things working in theory and simulation may not always function well in real-
life. Hence, field experiments are essential and will provide helpful insight into how
well the adaptive sampling methods perform in real-life.

In this chapter, results from three field experiments are presented. All of the
experiments are executed near the seafill in Freenfjorden. The first field experiment
was conducted in October 2018, and a static case similar to the static simulation
study in Chapter 6 was tested. Two field expeditions were done during 2020, where
the full spatio-temporal model was used with two different sampling strategies (the
objective function from Chapter 6 and the sampling strategy detecting excursion
sets as described in Chapter 7). Table 10.1 gives an overview of the fieldwork dates,
which method was tested, and from which paper the results are.

10.1 Static case

The static experiment was carried out on October 19th, 2018, in Frzenfjorden,
Norway. Figure 10.1 shows the chosen operational area together with the executed

Method Date Model Sampling strategy Paper

Static October 19th 2018 Spatial Objective Paper B
Dynamic December 17th 2020 Spatio-temporal Objective Paper C
Excursion sets September 17th 2020 Spatio-temporal Excursion Paper D

Table 10.1: Overview of the fieldwork presented in this thesis, showing the dates,
which sampling strategy was used, and from which paper the results are collected.
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10. Field Experiments

adaptive AUV path. The location of the outlet and a stationary buoy equipped
with a CTD sensor and a turbidity sensor is also marked in the figure.

Survey area

Figure 10.1: Map of the chosen operational area. The location of the stationary
buoy and the outlet is marked in red in the figure. The path of the AUV is drawn
as a red line inside the survey area which is marked as a blue rectangle.

10.1.1 Experimental setup

Frenfjorden is a fjord with shallow water, fishing nets, and boat traffic and is,
therefore, a risky place for an AUV mission. This led to limitations when choosing
the operational area. Considering the risk and assuring that the survey area was
fairly close to the outlet of particles, we ended up with a fairly small area (550 m x
250 m) shown in Figure 10.1. The waypoint grid was chosen inside this area so that
the AUV would not operate outside. A drifting margin of 50 m was allowed. The
grid cell size was set to 32 x 32 meters, and the parameters constraining the travel
length of the AUV (see equation (6.1)) was set to dyin = 250 m and dpax = 400 m.

The depth layer used in the mission (approximately 22-27 meters depth) was
chosen as the layer with the most variation in the simulation data from DREAM.
A mission was run for 110 minutes, starting at 8 am on October 19th, 2018.

In order to avoid vehicle drift outside of the safe operation area, the AUV
surfaced every time it reached a waypoint. When diving, the AUV followed a Yoyo
path which can be seen in Figure 10.2 showing the path in depth direction for the
first 20 minutes of the mission. The sensor value used in the algorithm was chosen
as the maximum TSM value in a span of 10 seconds near the waypoint.

10.1.2 Results and evaluation

This section presents the results related to the proposed adaptive sampling method.
Figure 10.3 shows the prior mean, the prior standard deviation, and the prior
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10.1. Static case
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Figure 10.2: Plot showing the yoyo path in the depth direction of the AUV for the
first 20 minutes of the survey.
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Figure 10.3: The initial state for the survey area. Showing the prior mean g, the
prior standard deviation oy and the prior objective values in each grid cell.

objective function. This was found using the empirical mean and variance from the
DREAM data in the area, as explained in chapter 5.

Figure 10.4 shows the updated state at selected time steps during the mission.
The estimated mean, the model variance, and the objective function is plotted
together with a red line showing the path of the AUV for the last five waypoints.
The sampling locations are shown as red dots, where the largest disk represents
the most recent sampling location.

It can be seen that the AUV chooses sampling locations according to the ob-
jective function but also takes into account the travel length criteria. The western
region of the survey area is never explored due to its low objective value. This
region is far from the outlet of particles, and the model data from DREAM shows
both low variance and low concentrations in this area. Thus, this is, by our model,
considered a less interesting area to sample. However, since our model increases
the variance with time in unsampled sites, there is reason to believe that this area
would have been explored if the mission had run longer.
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Figure 10.4: Updated state at selected time steps during the mission. The estimated
mean, the model standard deviation, and the objective function is plotted together
with a red line showing the path of the AUV for the last five waypoints.
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10.1. Static case

At the end of the mission, the variance in our GP model is highly reduced
compared to the prior variance. This indicates that the sampling algorithm works
according to the model. The predicted mean particle concentration is generally
higher near the outlet of particles, which is what we expected from theory and our
numerical model DREAM.

10.1.3 Buoy data and tidal effects

To better understand the area and the ground truth at the time of the experiment,
data from other marine platforms are considered. The fjord also has a moored
buoy equipped with a turbidity sensor. The buoy is located about 200 m from the
survey area (see Figure 10.1). Data from the buoy is presented in Figure 10.5D,
which shows the turbidity data for the whole day of the mission. A plot of the tidal
effects of the same day is included in Figure 10.5a. Comparing the turbidity data
with the tidal effects, it can be seen that the turbidity measurements seem to be
the highest close to a tidal low. During a tidal low, the water flows westward, out
of the fjord. Because the outlet lies to the east of the buoy, this is when the highest
concentration of particles is transported towards the buoy. The differences between
the measured turbidity values are quite significant depending on where in the tidal
cycle we are, indicating that the tidal effect highly affects the transportation of
particles in the fjord. Thus, adding this effect to our onboard model would likely
lead to an improvement. This is the motivation for the field experiment presented
in the next section.

Turbidity (FTU) October 19th
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(a) Tidal levels on the day of the survey. (b) Turbidity measurements from the
day of the survey.

Figure 10.5: Tidal levels and turbidity measurements from the moored buoy on the
day of the experiments.

To sum up, the field trial from the static scenario shows that the variance in
the model is reduced and that the locations are chosen according to the objective
function. The sampling seems to cover the area such that more samples are collected
near the outlet than further away from the outlet. Verification of the predicted
particle distribution is hard since there is no easy way to know the ground truth.
Still, the trends are as expected from common sense and from the numerical ocean
and particle transportation models.
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10. Field Experiments

10.2 Dynamic scenario

The field experiments testing the dynamic scenario was in December 2020. Two
missions were carried out on two consecutive days, December 17th and 18th, 2020,
testing the dynamic scenario (as in 6.4). The operational discharge outlet at the
time of the experiments is marked as 2.1 in Figure 10.6, and a rectangular opera-
tional area of size 1150 m x 250 m (also marked in the figure) was used. Again, we
focus on the depth layer at around 22-25 meters since this is a layer with a lot of
variation and a layer where we, according to the DREAM and SINMOD models,
will find a lot of mine tailings. This is verified by our sensor data as well. Figure
10.7 shows one transect (waypoint-to-waypoint) for the AUV including sensor data
values. It is clear from the figure that a layer with increased turbidity is reached.
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Figure 10.6: The location of Freenfjorden and the factory Omya Hustadmarmor
AS. The black lines represent the pipes where mine tailings are let out, and the
numbers represent possible outlets. The factory is marked in pink in the figure. The
survey area of size 1150 m x 250 m is marked as a blue rectangle and is located
on the south-west of the outlets.
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Figure 10.7: Showing the AUV transect from waypoint to waypoint. The color of
the transect indicates normalized mine tailings concentration values, and the two
red surfaces show the depth layer (22-25 meters) where samples are collected.
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10.2. Dynamic scenario
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Figure 10.8: The blue line shows the tidal cycle on December 17th. The red boxes
indicate the time intervals for the two missions.

10.2.1 AUV path

Inside the operational area, a 2-dimensional grid of size 57 x 12 was defined, giving
N = 684. The distance between each node was approximately 20 m in both grid
directions, and each grid point was a possible waypoint for the AUV. The AUV was
set to surface whenever reaching a new waypoint to reduce the uncertainty caused
by navigation errors and vehicle drift and for safety reasons. The AUV did a yoyo
maneuver between 20 and 26 meters between each waypoint. Figure 10.7 shows
one transect (waypoint-to-waypoint) from our survey, starting with a dive until
reaching the selected depth layer, doing the yoyo maneuver, and then surfacing in
a corkscrew maneuver. The corkscrew maneuver was chosen to obtain a sampling
value as close as possible to the waypoint. The sensor reading used for updating
the model was chosen as the maximum value in the layer 22-25 meters (the layer
marked with red surfaces) for each of the separate yoyos. For the transect in Figure
10.7, this would result in 6 updating values. Because the transect length could vary
for different waypoints, the number of yoyos was not fixed but mostly alternated
between 5 or 6 yoyos per transect, giving 5 or 6 updating values per transect.

10.2.2 Results

The survey area is located near the coast in a fjord arm, so the currents are highly
influenced by the tidal cycle. To get a better insight into how the ocean currents
behave at the time of the missions, we consider the tidal cycle at the time in Figure
10.8. Our temporal model considers the tides’ variations, and we choose to focus
on two missions occurring at different intervals in the tidal cycle. The first mission
is before a tidal high, and the second is when the tides turn at the top. The period
of the two missions is marked in red in the figure. Hourly predicted ocean currents
between 09:00 and 13:00 from the SINMOD model could be seen in Figure 10.9. As
expected, the currents are highly influenced by the tides showing an inward flow
(eastward) before the tidal high (09:00-11:00) and weaker ocean currents during
the tidal high (11:00-13:00). These predictions are used as input to our onboard
model as the forcing in the SPDE model.
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10. Field Experiments
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Figure 10.9: Hourly ocean current predictions from SINMOD between 09:00 and
13.00. The currents are highly influenced by the tides showing an inward flow
(eastward) before the tidal high (09:00-11:00) and weaker ocean currents during
the tidal high (11:00-13:00).

Mission 1: 08:53 - 10:44

The first mission was conducted between 08:53 and 10:44 on December 17th, be-
fore a tidal high. The estimated current from the SINMOD model can be seen
in Figures 10.9a, 10.9b, 10.9c. Figure 10.10 presents the onboard model results.
The left column shows the updated mean of the onboard model, representing the
mine tailings log(concentration) for selected time steps. The right column shows
the onboard model standard deviation at selected time steps and the AUV path
up until the given time. The red line represents the AUV path, and the red dots
are the waypoints selected by our sampling strategy. The results show increased
tailing concentration in the eastern area, especially at the beginning of the mission
(see Figure 10.10a,10.10c and 10.10e). We observe a decay in the concentration in
this area after 1.5 hours (see Figure 10.10g). This is when the ocean currents get
weaker due to the tidal cycle. In the beginning, the chosen sampling strategy seems
to focus on exploring the area, covering large parts of the whole rectangle. After
the exploration, the focus switches to the eastern area, where high mine tailing
concentrations have been observed.

Mission 2: 11:52 - 13:24

The second mission was conducted during a tidal high. Figure 10.11 shows results
from this survey. The predicted SINMOD ocean currents are much weaker than for
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10.3. Excursion sets

mission 1 (see Figure 10.9d and 10.9¢). Figure 10.11 presents the onboard model
results. The left column shows the updated mean of the onboard model, and the
right column shows the standard deviation together with the selected AUV path.
This mission does not contain areas of clearly increased tailings concentration, and
we see that the AUV chooses a different sampling strategy. Since no area shows
increased concentration, there is no extra focus on any special area. Instead, the
waypoints are chosen to cover as much as possible of the whole survey area during
the whole mission.

10.2.3 Discussion

The chosen sampling paths (see second column of Figure 10.10 and 10.11) follow
two different strategies. In the beginning, they are quite similar, focusing on ex-
ploring the area, but after the exploration, we see differences in waypoint selection.
The sampling path in mission 1 (Figure 10.10) focuses on the eastern area where
increased concentration is observed, while the sampling path in mission 2, where
there are no areas with increased tailings concentration, continues to cover the
whole region also after the initial exploration. For both surveys, the standard de-
viation is clearly reduced at the end of the mission, indicating that the method
manages to explore the area. The selection of different strategies shows that the
method is adaptive and will change depending on prior data and observations and
that the sampling is focused on areas with high tailings concentration. The AUV
data are undoubtedly useful for refining the DREAM results.

It is hard to rate the field experiments’ performance since there is no ground
truth for this case. Still, the model mean concentration (first column of Figure 10.10
and 10.11 coincide well with our assumptions on how the tailings concentration
behave. Since the outlet is located on the east side of our area, we assume elevated
concentration in the east. It is also reasonable to assume that the concentration of
mine tailings in the survey area will be higher when the currents flow westward,
as is the case for mission 1. We have also compared the results with data from
the ocean model DREAM and have observed the same tendencies. However, this is
not an accurate comparison since the proxy model is trained with data from this
model.

Since there is no easy way to obtain a ground truth for field experiments, it is
difficult to determine how well the method performs in the field. Still, our results
agree well with our assumptions of the mine tailings distribution at the time,
and the selection of different sampling strategies for two missions illustrates the
method’s adaptivity.

10.3 Excursion sets

We present results where the AUV was used in the field to detect ESs containing
a high concentration of mine tailings particles. The experiment was carried out on
September 17th, 2020. The operational discharge at the time of the experiments is
marked as 2.4 in Figure 10.6, and an operational area on the west side of the outlet
of size 1140 m x 240 m was used. The predicted drift field at 20 m depth at the
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Figure 10.10: Results from mission 1. The left column shows the updated mean of
the onboard model, representing the mine tailings log(concentration) for selected
time steps. The right column shows the onboard model standard deviation at se-
lected time steps and the AUV path up until the given time. The red line represents
the AUV path, and the red dots are the waypoints selected by our sampling strat-

egy.
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Figure 10.11: Results from mission 2. The left column shows the updated mean of
the onboard model, representing the mine tailings log(concentration) for selected
time steps. The right column shows the onboard model standard deviation at se-
lected time steps and the AUV path up until the given time. The red line represents
the AUV path, and the red dots are the waypoints selected by our sampling strat-

egy.

time of the experiment is shown in Figure 10.12 (from SINMOD). As seen in the
display, the currents mainly flowed outwards of the fjord (towards the south-west)
at the time.

10.3.1 Experimental setup

The size 57 x 12 regular 2-dimensional grid inside the operational area means that
N = 684. The distance between each node was approximately 20 m in both grid
directions. In order to reduce risk and avoid too much vehicle drift, the AUV was set
to move in a yoyo motion between the surface and the target near 20 m depth. By
doing so, the distance between each new chosen neighboring waypoint was between
270 m and 290 m, and considering the AUV speed (about 1.2 m/s), the travel time
between each waypoint was around 4 minutes.

The SPDE parameters in the field experiments were specified as explained in
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Figure 10.12: The drift field at 30 meters depth used in the field experiments. The
currents flow towards the south-west (out of the fjord).

Chapter 5 using predictions from DREAM and SINMOD for the time of the mis-

sion.

10.3.2 Results

We used the {SPDE: EMMP; } strategy to choose the next waypoint in the field
experiments. This strategy was run for a total of ¢,, = 12 time steps, and a critical
limit [ = 4.5 log(ppb) was used. Figure 10.13 summarizes the mine tailings concen-
tration distribution at selected time steps of this procedure. The displays indicate
updated mean (left), standard deviation (right), and EPs (middle). The resulting
AUV path is plotted as a red line and the waypoints as dots.

Since there exists no ground truth for this case, the evaluation of the results is
complex. Still, we can see that the method behaves as we expect. At the beginning
of the mission, the AUV traverses from the west to the east side close to the outlet.
Then it heads back west and focuses on the area of the predicted boundary of
the ES. Comparing the standard deviations at the beginning of the mission with
the standard deviations at the end of the mission, we see that the uncertainty in
the model is clearly reduced. The results are clearly refined from that of SINMOD
and DREAM data alone (top) when AUV data are assimilated into the model
(bottom rows). Also, the EPs show that the mine tailings concentrations tend to
move further to the left in the lower part of the grid. This appears natural from
the physics induced by the advection field in Figure 10.12 but is far from apparent
based on the initial model (top).

Figure 10.14 shows the EMMP, over all the grid nodes at each time step.
The EMMP; decreases over time, indicating that our method chooses informative
waypoints. The exception is at time ¢ = 4, where there is a slight increase. By taking
a closer look at the data, this occurs because of a surprisingly small concentration
(4.21 log(ppb)) in a location quite close to the source (lower, right corner in Figure
10.13d). Since the model expected a higher concentration at this location, and
because the in-situ value is quite close to the critical limit [ = 4.5 log(ppb), the
update at t = 4 led to an increase in the EMMP.

In field results, the adaptive sampling procedure gives reasonable results in the
sense that the vehicle focuses on the expected boundary regions of high and low
concentration, and at the end of the operation, the excursion probabilities are close
to 0 or 1. The results further indicate that the excursion sets obtained from the
autonomous surveying can be interpreted from the physical conditions of the ocean
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Figure 10.13: Predicted state at selected time steps. The selected waypoints are
plotted as a red dot, and the red line shows the AUV path up until the given time.
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Figure 10.14: EMMP; computed at each time step t of the operation. The EMMP;
decreases over time, indicating that our method chooses informative waypoints. An
exception can be seen at time ¢t = 4, where there is a slight increase.

currents and the mining deposit site, and more so than from the ocean model data
alone.

10.4 Closing remarks

There is currently an enormous development in sensor technologies and autonomous
robotic systems that can deploy these new tools in harsh environments such as
the oceans. Their use can benefit from realistic statistical modeling and design
methods, for instance, in the context of where and when to sample an environmental
phenomenon, as we demonstrate in this work. The field experiments work as a
proof-of-concept; we show that the suggested models are able to run onboard an
AUV with limited computing resources and the AUV is able to select waypoints
based on onboard computations using the framework described in Chapter 9.

Exploring the accuracy of the field estimation is hard due to the difficulty of
obtaining a ground truth. However, the results coincide well with our assumptions
on how the tailings concentration behave in the area. Comparison with the particle
transport model DREAM also show the same tendencies.
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Chapter 11

Conclusion and future work

In this thesis, methods for adaptive sampling with AUVs in coastal regions have
been explored. Chapter 2 presents numerical ocean models. Data from these mod-
els are used to create an onboard spatio-temporal GP model expressing the state
of a 2-dimensional particle concentration field. The spatio-temporal model are pre-
sented in chapters 3 and 4, and chapter 5 shows how the parameters of the onboard
model are specified from the ocean model data. An objective function for waypoint
selecting is described in chapter 6. The performance of adaptive approaches using
this function is tested in simulation studies and compared to simpler strategies, and
the studies show that the adaptive approach performs better than the simpler ap-
proach (e.g., lawnmower surveys). It is also seen that the sampling strategy behaves
in desired ways as it reduces model variance and explores hotspots efficiently. In
chapter 7, another sampling strategy based on reducing the mis-classification prob-
abilities of the excursions sets of high and low concentration levels was explored.
Simulation results show that a hybrid strategy using a myopic approach combined
with a random detour is performing better than naive strategies. Also, the careful
spatio-temporal modeling provides more accurate results than simpler spatial or
autoregressive models. The inclusion of multiple vehicles is explored in chapter 8,
where the survey area is partitioned and shared between the vehicles using weighted
Voronoi diagrams. Adaptive sampling is executed in each region using the previ-
ously suggested objective function-strategy. It is shown that an area can be more
efficiently explored using multiple vehicles, as the estimation error decreases with
the number of added vehicles. Finally, results from field experiments are shown in
chapter 10. Although there is no ground truth, the results show expected behavior
and can serve as a proof-of-concept of the suggested sampling methods.

Now, the research questions from the introduction (Chapter 1) are highlighted
and based on the presented work, answers to these questions are given.
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Research questions and answers

e How can prior information be utilized? Prior information from
numerical ocean models has been incorporated into an onboard model
through the specification of parameters in a spatio-temporal GP
model. Spatial dependencies are expressed through the GP kernel (cor-
relation function), and knowledge of ocean currents and diffusion of
particles are incorporated in a SPDE process model.

¢ How can we create an ocean dynamics model that is compu-
tationally efficient, easy to update, and able to run onboard
an AUV? The onboard spatio-temporal GP model can efficiently
be used for adaptive sampling. This is shown both through extensive
simulation studies and during multiple field experiments.

e What is the optimal way of taking samples using one or mul-
tiple AUVs? Two sampling strategies are presented in this thesis.
The objective function has proven to be useful, and the balance be-
tween exploration and exploitation can easily be adjusted by choosing
different weightings in the function. This way of selecting waypoints
is efficient for field estimation. Another approach for estimation of
excursion sets has also been explored.

11.1 Future research directions

In this thesis, methods for underwater adaptive sampling with an AUV are dis-
cussed. This section mentions future directions for research where some of the
directions are follow-ups on the current research and others are side-steps not in-
vestigated due to the limited scope of the thesis. The future directions are listed
below:

e Sparse GP techniques: AUVs have limited computer powers, and as dis-
cussed in chapter 3, expanding the size of the estimated field greatly increases
the computer resources needed. Sparse GP techniques could possibly reduce
the computational time in such cases and should be further investigated.

e Multi-robot field testing: The field experiments are only run for a single
AUV, and the multiple robot approach is only tested in simulation. Validat-
ing the simulation results in the field would be interesting. We have tried to
adhere to constraints of fielded systems, for example, in the use of acoustic
communication range and throughput, to provide confidence that these sys-
tems can be put to use in the field without needing significant modifications.

e Localization uncertainty: Underwater vehicles accumulate localization un-
certainty when traveling underwater. This is especially observed when the
AUV operates without bottom-track. In this thesis, an assumption has been
made that localization accuracy is suitable for this work. In addition, the
AUYV is set to surface relatively often to avoid too much drifting errors. Future
work should, however, consider the localization uncertainty in the adaptive
sampling approaches.

104



11.1. Future research directions

e Onboard current measurement: In the spatio-temporal model, current
data from the ocean model SINMOD is used to model the advection field,
but as stated, there are uncertainties in the ocean model data. With im-
proved technology and sensors, in-situ current measurements can be used to
determine ocean currents.

o Expanding to 3D: Further work includes three-dimensional modeling,
which would extend the current work only by looking at 20 m depth. This
is, of course, more demanding from a computational viewpoint, but it would
make the data assimilation much more realistic and avoid two-dimensional
projection approximations in the AUV waypoint planning.

e Uncertainty in the advection field: It would also be interesting to include
uncertainty in the advection field. A full-fledged stochastic model for this
current field would likely not be possible to embed on the onboard computing
resources, but a mixture SPDE model over a few scenarios of current fields
might work.
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