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Abstract: This paper presents an exponentially stable nonlinear wind velocity observer for
fixed-wing unmanned aerial vehicles (UAVs). The observer uses a model of the aircraft combined
with a GNSS-aided inertial navigation system (INS). The INS uses an attitude observer together
with a pitot static probe measuring dynamic pressure in the longitudinal direction as well as
the airspeed. The observer is able to estimate the wind velocity and from this compute the
relative velocity, which directly contains information about the angle of attack (AOA) and
sideslip angle (SSA). The nonlinear observer is also able to estimate the scaling factor of the
pitot static probe measurement and there are no requirements on persistence of excitation (PE)
of the UAV maneuvers. The computational footprint is smaller than the conventional Kalman
filter, which makes the algorithm well suited for embedded systems. The designed observer is
proven exponentially stable under stable flight and through simulations it is verified that the
estimates converge to the true values of a realistic wind velocity when there are no model errors.

Keywords: Nonlinear Observers, Wind Velocity, Unmanned Aerial Vehicles, Inertial
Navigation Systems

1. INTRODUCTION

The ability to correctly estimate the wind and relative ve-
locity for a fixed-wing UAV is very important. Knowledge
of the wind velocity can be exploited in the control system
where the wind can be treated as a disturbance and from
the relative velocity both the AOA and SSA are directly
computable. The AOA and SSA contain useful information
related to the performance and safety of the aircraft, e.g.
the value of the AOA is directly related to whether the
wing is under stall conditions which leads to turbulent
air flow and a considerable drop in the wing-produced
lift force (Beard and Mclain [2012]). Autonomous landing
operations also require information about the wind.
Larger fixed-wing aircraft are often equipped with sensors,
such as vanes and multi-hole pitot probes, that provide
measurements of the wind velocity along with the AOA
and SSA. For a small UAV, this solution is expensive and
impractical due to space limitations, weight constraints
and increased power consumption. Yet having the infor-
mation about the wind would be useful for the relatively
inexpensive aircraft to perform autonomous missions such
as a payload deployment or pickup, or a precise landing in
a small net aboard a ship. It is therefore highly desirable
to have a wind and relative velocity observer only utiliz-
ing measurements obtained by the standard sensor suite
equipped on a UAV, an inertial measurement unit (IMU),
a Global Navigation Satellite System (GNSS) receiver
(Beard and Mclain [2012], Farrell [2008]), and a pitot static
probe in conjunction with a differential pressure sensor
supplying an air speed measurement (Beard and Mclain

[2012]).
When designing an observer for a nonlinear system a com-
mon approach is to use the Extended Kalman Filter (EKF)
(Brown [1972]). This approach has been used for develop-
ing wind velocity observers based on the kinematic equa-
tions in combination with an aerodynamic model of the
aircraft, e.g. Kumon et al. [2005], Long and Song [2009],
Langelaan et al. [2011], Ramprasadh and Arya [2012], and
Cho et al. [2013]. Rodriguez et al. [2007] present a method
for estimating wind velocity for a miniature aerial vehicle
(MAV) by using optical flow. Paces et al. [2010] proposes a
twin differential sensor setup for estimating the AOA and
SSA. An EKF structure with a pitot static probe is also
used by Hansen and Blanke [2014] for detecting sensor fail-
ure and Lie and Gebre-Egziabher [2013] propose an EKF
for estimating the wind velocity without the pitot static
probe air speed measurement. A model-free wind velocity
observer has been proposed by Cho et al. [2011] and Rhudy
et al. [2013] avoiding the aircraft model. Johansen et al.
[2015] have also developed a model-free observer, which is
able to estimate the pitot static probe correction factor
and thus provide online calibration and fault detection of
the airspeed sensor. The model-free observer requires that
the yaw and pitch motions are persistently excited (PE)
in order to ensure convergent estimates. An extension that
also uses IMU measurements and lift coefficient estimation
is given in Wenz et al. [2016]. The observer in this paper
removes the PE condition for the price of using a relatively
simple aircraft model to obtain convergent estimates.



1.1 Contributions of this paper

The main contribution of the paper is a nonlinear ob-
server that provides exponential stability and convergent
estimates of wind velocity from which estimates of AOA
and SSA can be derived. The observer utilizes a standard
UAV sensor suite combined with a relatively simple aero-
dynamic model of the aircraft, which is updated using pro-
peller revolutions and pitot static probe measurements. An
advantage of the observer is that no maneuvers or require-
ments for PE are needed. A potential disadvantage is that
model errors may give errors in the estimates. Another
contribution of the paper is the compact representation of
the small aircraft model of Beard and Mclain [2012] using
the matrix-vector representation of Fossen [2011]. For the
proof, the aerodynamic forces were divided into a stabi-
lizing linear term and a vector of the remaining nonlinear
aerodynamic forces with physical properties such as energy
dissipation, which can be exploited when constructing the
Lyapunov function for observer error dynamics. Finally,
the nonlinear observer is validated through simulation
using a small fixed-wing UAV exposed to wind.

1.2 Notation and preliminaries

For a vector or matrix X, X> denotes its transpose. The
operator ‖ · ‖ denotes the Euclidean norm for vectors and
the Frobenius norm for matrices. For a vector x ∈ R3,
S(x) denotes the skew-symmetric matrix:

S(x) =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

]
The n×n identity matrix is denoted by In×n and the m×n
zero element matrix by 0m×n. Vectors in the body-fixed
(BODY) and North-East-Down (NED) coordinate frames
are denoted by the superscripts b and n, respectively.
Consequently, the linear velocity vector satisfies vn = Rvb

where R ∈ SO(3) is the rotation matrix from BODY to
NED.

1.3 Problem formulation

The UAV’s velocity over ground can be expressed as
the sum of the relative velocity and the wind velocity
according to:

vb = vbr + vbw (1)

where vb = [u, v, w]> is the UAV’s linear velocity vector,
vbr = [ur, vr, wr]

> is the relative velocity vector and vbw =
[uw, vw, ww]> is the wind velocity vector. The goal is to
estimate vbw and vbr, since the airspeed Va, AOA and SSA
are recognized as:

Va =
√
u2
r + v2

r + w2
r > 0 (2)

α = tan−1

(
wr
ur

)
(3)

β = sin−1

(
vr
Va

)
(4)

2. UAV RIGID-BODY KINETICS

By application of Euler’s first and second axioms the rigid-
body kinetics for the translational and rotational dynamics
of a rigid body is (Fossen [2011])

m(v̇b + S(ωb)vb) = f b (5)

Jω̇b − S(Jωb)ωb = mb (6)

where m is the mass of the vehicle, ωb = [p, q, r]> is the
body-fixed angular velocities, J ∈ R3×3 is the symmetric
inertia tensor and f b and mb are the forces and moments
on the vehicle. In Beard and Mclain [2012] it is shown that
a small aircraft can be modeled by (5) and (6) where

J =

[
Jx 0 −Jxz
0 Jy 0
−Jxz 0 Jz

]
(7)

is a matrix of products and moments of inertia. The
aircraft forces and moments can be approximated by the
following formula (Beard and Mclain [2012]):

[
fb

mb

]
=

1

2
ρV 2
a S


−CD(α) cos(α) + CL(α) sin(α)

CY0
+ CYββ

−CD(α) sin(α) − CL(α) cos(α)

b
(
Cl0 + Clββ + Clδaδa + Clδrδr

)
c (Cm0 + Cmαα+ Cmδeδe)

b
(
Cn0 + Cnββ + Cnδaδa + Cnδrδr

)



+
1

2
ρV 2
a S



CXq (α) c
2Va

q + CXδe (α)δe

CYp
b

2Va
p+ CYr

b
2Va

r + CYδa δa + CYδr δr
CZq (α) c

2Va
q + CZδe (α)δe

b
(
Clpp+ Clrr

)
b

2Va
c
(
Cmqq

)
b

2Va
b
(
Cnpp+ Cnrr

)
b

2Va



+


−mg sin θ

mg cos θ sinφ
mg cos θ cosφ

0
0
0

+



1
2ρSpropCprop

(
(kmotorδt)

2 − V 2
a

)
0
0

−kTp(kΩδt)
2

0
0


(8)

where ρ is the density of air, and θ and φ are pitch and
roll angles. The aerodynamic lift and drag coefficients,
CL(α) and CD(α), and the aerodynamic force coefficients
are nonlinear functions of AOA:

CXq (α) , −CDq cos(α) + CLq sin(α)

CXδe (α) , −CDδe cos(α) + CLδe sin(α)

CZq (α) , −CDq sin(α)− CLq cos(α)

CZδe (α) , −CDδe sin(α)− CLδe cos(α)

while CY0
, CYβ , Cl0 , Clβ , Clδa , Cn0

, Cnβ , Cnδa , Cnδr , CYp ,
CYr , CYδa , Clp , Clr , Cmq , Cnp , Cnr , and Cprop are constant
aerodynamic coefficients. δ = [δa, δe, δr, δt] are the control
signals of the aileron deflection, elevator deflection, rudder
deflection and throttle deflection. The area of the wing
is given by S, the propeller area is Sprop, b is the wing
span, and c is the mean aerodynamic chord of the wing.
kmotor is the efficiency of the motor and kTp and kΩ

are constants that relate the throttle deflection δt to the
moment opposite the propeller rotation.

3. MATRIX-VECTOR FORM AIRCRAFT MODEL

The aircraft model of Beard and Mclain [2012] can be ex-
pressed in matrix-vector form according to (Fossen [2011])

MRBν̇ +CRB(ν)ν = τRB (9)



where ν = [vb; ωb] is the 6-DOF generalized velocity
vector. The rigid-body mass matrix MRB and rigid-body
Coriolis and centripetal matrix CRB(ν) are given by

MRB =

[
mI3×3 03×3

03×3 J

]
(10)

CRB(ν) =

[
mS(ωb) 03×3

03×3 −S(Jωb)

]
(11)

The generalized vector of external forces and moments is
τRB = [f b; mb]. The wind velocity is assumed irrotational
and steady relative to the Earth. The generalized wind
velocity of an irrotational fluid is

νw = [uw, vw, ww︸ ︷︷ ︸
vbw

, 0, 0, 0]> (12)

and the generalized relative velocity vector νr = ν − νw.
Since vnw = Rvbw, then under assumption of steady wind
(v̇nw = 0), we get

v̇nw = Ṙvbw +Rv̇bw = 0 (13)

where Ṙ = RS(ωb). Consequently,

v̇bw = S(ωb)vbw (14)

This leads to the property

MRBν̇w +CRB(νr)νw = 0 (15)

which is easily verified by expanding the matrices MRB

and CRB . Hence,

MRBν̇ +CRB(ν)ν = MRB [ν̇r + ν̇w] +CRB(νr)[νr + νw]

and finally, by inserting (15) we get

MRBν̇ +CRB(ν)ν = MRBν̇r +CRB(νr)νr (16)

Notice that (16) is the equivalent to Property 8.1 in Fossen
[2011]. The dynamics of the relative velocity νr can finally
be expressed as:

MRBν̇r +CRB(νr)νr = τRB (17)

4. NONLINEAR WIND VELOCITY OBSERVER

The following section presents the wind velocity observer.

4.1 Measurements

The proposed wind observer and the GNSS-aided inertial
navigation system (INS), which consists of an IMU and an
attitude observer, forms a cascade as shown in Figure 1.
The following measurements are needed to implement the
observer:

• An attitude measurement, typically represented as
Euler angles or unit quaternions used to compute the
rotation matrix R.
• Measurement of the airspeed Va
• Airspeed sensor measuring the relative longitudinal

velocity umr > 0, which relates to the relative longi-
tudinal velocity ur = γumr by an unknown positive
scaling factor γ.

• An angular velocity (rate gyro) measurement ωb

which has been compensated for gyro drift and bias.
• The control surface deflections δt, δa, δe and δr.
• The UAV velocity vn in NED measured by the GNSS.

A block diagram of the observer is shown in Figure 1.

Fig. 1. Block diagram showing the cascaded structure of
the observer including the signals used in the wind
velocity observer.

4.2 Assumptions

The key assumptions needed to prove exponential stability
are:

• The INS GNSS measurements R, ωb and vn are
smooth bounded signals. Hence, these signals will be
treated as time-varying known signals and not states
in the observer. This implies that the observer error
dynamics become nonautonomous.

• The wind velocity vector is constant (or at least
slowly varying) such that v̇nw = 0.

• The sensor scaling factor γ is positive and constant
(or at least slowly varying) such that γ̇ = 0, and the
relative longitudinal velocity ur is positive.

• The relative velocity in the lateral direction vr is small
compared to the airspeed Va and consequently the
SSA, that is β, is small.

• The lift and drag coefficient, CL(α) and CD(α), are
linear in α, i.e. α is small.

• The aircraft and autopilot system is closed-loop stable
(stable flight) and the flight envelope ensures the σ1,
as defined in the proof in Appendix A, is positive.

4.3 Observer model

To simplify the notation, time-varying measurements will
be denoted by time t when using functions, i.e.

R :=R(t) (18)

S(ωb) :=S(t) (19)

Hence, the translational motion components of (17) can
be written as:

mv̇br +mS(t)vbr +mR>(t)gn

= τaero,1(vbr, t) + τaero,2(t) (20)

with gn = [0, 0, g]>. The functions below depend on the
state vbr and time-varying measurements represented by
the argument t:

τaero,1(vbr, t) :=
1

2
ρSV 2

a

−CD(α) cos(α) + CL(α) sin(α)
CY0

+ CYββ

−CD(α) sin(α) − CL(α) cos(α)


+

1

2
ρSV 2

a

CXq (α) c
2Va

q + CXδe (α)δe −
1

S
SpropCprop

0
CZq (α) c

2Va
q + CZδe (α)δe


(21)



τaero,2(t) :=
1
2ρSpropCprop (kmotorδt)

2

1

2
ρSV 2

a

(
CYp

b
2Va

p+ CYr
b

2Va
r + CYδa δa + CYδr δr

)
0

 (22)

The reason for this separation of the aerodynamic forces
will become apparent in the proof.

4.4 Wind observer design

As shown in Lemma 1 in Appendix A, for small AOA and
SSA the linear and nonlinear terms of τaero,1(vbr, t) can be
expressed as a sum:

τaero,1(vbr, t) := −D(t)vbr − d(vbr, t) (23)

Hence, for a stable flight D(t) > 0 and vb>r d(vbr, t) ≥ 0,
∀t ≥ 0. Furthermore, when designing the observer we
assume that the nonlinear aerodynamic terms satisfy:

P

[
∂d(vbr, t)

∂vbr

]
+

[
∂d(vbr, t)

∂vbr

]>
P ≥ 0, ∀vbr ∈ Rn, t ≥ 0

(24)
where P = P> > 0. Then the following property (Aamo
et al. [2001]) holds:

(x−y)>P (d(x, t)−d(y, t)) ≥ 0, ∀x,y ∈ R3, t ≥ 0 (25)

Notice that d(vbr, t) depends on time-varying measure-
ments such as gyro rates, control surfaces, airspeed etc.
Consequently, Condition (24) must be satisfied for all
measured signals, which are assumed to be smooth and
bounded.

Proposition 1. (Nonlinear wind observer). Under the
assumptions given in Section 4.2 and ineq. (24), the non-
linear observer:

m ˙̂vbr =− S(t)v̂br + τaero,1(v̂br, t) + τaero,2(t)

−mR>(t)gn −Kuh
(
h>v̂br − γ̂umr (t)

)
(26)

˙̂γ =Kγ

(
h>v̂br − γ̂umr (t)

)
(27)

v̂bw =R>(t)vn − v̂br (28)

renders the equilibrium point (ṽbr; γ̃) = (0, 0) globally
exponentially stable (GES) if the observer gains are chosen
as Ku > 0 and Kγ = Kuu

m
r . The vector h = [1 0 0]> is

a selection vector, umr (t) > 0 for all t is the pitot static
probe air speed measurement in the longitudinal direction,
and R(t),ωb(t) and vn(t) are the INS and GNSS measure-
ments, respectively. Notice that the airspeed measurement
Va is used in the expression for τaero,2(t) given by (22),

whereas the airspeed estimate V̂a = ‖v̂br‖ is is used in the
expression for τaero,1(v̂br, t) given by (21).

Comment on local versus global stability: The sta-
bility result is in practice local since the observer is based
on the linear expressions (48)–(51) for the aerodynamic
forces. The linear drag and lift coefficients CL(α) and
CD(α) cannot describe nonlinear maneuvers such as stall,
spinning etc.
Comment on the Va measurement: Small UAVs usu-
ally measures the longitudinal airspeed ur, but a direct
measurement of Va is usually not available. The simula-
tions in this paper show similar results by exchanging the
Va measurement with the estimate V̂a in τaero,2(t), but no
analysis has been performed to support this.

Proof: Since v̂bw is algebraically related to vbr by (28), it is
only necessary to prove that the estimated states v̂br and
γ̂ converge to their true values. Consider the translational
dynamics of the relative velocity and rewrite the correction
term in terms of the error states (20) and (26) such that:

m ˙̃vbr =τaero,1(vbr, t)− τaero,1(v̂br, t)

+Kuh
(
h>v̂br − γ̂umr (t)

)
=−

(
D(t)vbr −D(t)v̂br

)
−
(
d(vbr, t)− d(v̂br, t)

)
+Kuh

(
h>v̂br − umr (t)γ + umr (t)γ̃

)
=−D(t)ṽbr −

(
d(vbr, t)− d(v̂br, t)

)
+Kuh

(
umr (t)γ̃ − h>ṽbr

)
(29)

˙̃γ = −Kγ

(
umr (t)γ̃ − h>ṽbr

)
(30)

Consider the Lyapunov function candidate:

V =
1

2
m
(
ṽb>r ṽ

b
r + γ̃2

)
(31)

Hence,

V̇ = ṽbr
(
D(t)> +D(t)

)
ṽbr + ṽb>r

(
d(vbr, t)− d(v̂br, t)

)
+Ku

(
ṽb>r hu

m
r (t)γ̃ − ṽb>r hh>ṽbr

)
−Kγ

(
umr (t)γ̃2 − γ̃h>ṽbr

)
(32)

≤ −
[
γ̃ ṽb>r

]
Q(t)

[
γ̃
ṽbr

]
thanks to (25) and

Q(t) :=

 Kγu
m
r −Kγ 0 0

−Kuu
m
r ρSσ1 +Ku 0 0

0 0 −ρSCYβ 0
0 0 0 ρSσ1

 (33)

where the expression for σ1 = (CD0
+ CDδe δe(t))Va,min +

CDqcq(t)/2 is derived in Appendix A. To assess whether
Q(t) is positive definite we consider the leading principal
minors of the symmetric matrix Q(t) + Q>(t). If the
gains are chosen such that 4Kγu

m
r (ρSσ1 +Ku)− (Kuu

m
r +

Kγ)2 > 0 and since σ1 > 0 and CYβ < 0 then it follows

that V̇ < 0 for ṽbr 6= 0 and γ̃ 6= 0. Finally, by invoking
Theorem 4.10 in Khalil [2002] the conditions for GES are
easily verified.

Corollary 1. If the wind velocity observer (26)–(28) is in
cascade with an attitude observer where the equilibrium
point of the error dynamics R̃ = R − R̂ = 0 is GES,
then the nonlinear wind velocity observer (26)–(28) with

R exchanged with the estimate R̂ is GES.

Proof: See Appendix B.

5. AEROSONDE UAV STABILITY REQUIREMENTS

The stability requirements (Proposition 1) of the observer
(26)–(28) can appear difficult to evaluate and a case
study is therefore presented using the Aerosonde UAV
(Beard and Mclain [2012]). For the Aerosonde UAV the
requirement σ1 > 0 reduces to (both CDδe and CDq are
zero):

0.03Va,min > 0 (34)

which clearly is satisfied. Since CYβ = −0.98 the matrix
D(t) > 0 for all t ≥ 0. The Condition (24) can be rewritten
as (see Appendix A):



[
∂d

∂vbr

]
+

[
∂d

∂vbr

]>
:= ρS

[
ζ1 0 ζ2
0 0 0
ζ2 0 ζ3

]
≥ 0 (35)

where

ζ1 =2CDαwr + 4
1

S
SpropCpropur + 2η1ur/Va

+ 2
(
CD0

+ CDδe δe
)

∆Va

ζ2 =CDαur − CLαwr + 2
1

S
SpropCpropwr

+ (η1wr + η2ur) /Va
ζ3 =2CLαur + 4CDαwr + 2η2wr/Va

+ 2
(
CD0

+ CDδe δe
)

∆Va

Hence, the inequality (24) is satisfied with P = I for all
t ≥ 0 iff ζ1 ≥ 0, ζ3 ≥ 0, and ζ1ζ3 − ζ2

2 > 0.

For ζ1 > 0:

0.30wr + 0.41ur + 0.30∆Va + 0.03u2
r/Va

− (0.28− 0.36δe(t))wrVa > 0 (36)

This can be rewritten as

0.03u2
r/Va + 0.41ur + 0.30∆Va
> 0.02wr(1− Va)− 0.36δe(t)wrVa (37)

Similarly for ζ3 we have:

6.90ur + 0.06∆Va + 0.06w2
r/Va

> −1.2wr − (0.56− 0.72δe)urwr/Va (38)

Since δe and wr are much smaller than ur during a
stable flight (37) and (38) holds during normal operation
of the UAV. Throughout the simulations presented in
Section 6, the values assumed by ζ1 (with a Va,min = 14
[m/s]) fluctuates around 39.5 and never drops below 36.8.
For ζ3, the fluctuation is around 183 with a minimum
of 177. The requirement ζ1ζ3 − ζ2

2 > 0 is difficult to
analyze analytically but, the magnitude of ζ2 never exceeds
20.2 and it is therefore evident that the requirement is
fulfilled throughout the simulation. However, there exists
combinations of ur, wr and δe, which can occur in other
conditions that do not guarantee this condition to hold.
Because of the constraint (37) and some approximations
the stability results are local for the Aerosonde UAV.
Consequently, it is recommended to use the nonlinear
observer only for flight envelopes accurately described by
the aircraft model and stable flights.

6. SIMULATION STUDY

To assess the effectiveness of the proposed nonlinear wind
observer, two different simulations have been conducted
using Matlab Simulink. The simulations have been based
on the complete model of the small aircraft system for
the Aerosonde UAV presented in Beard and Mclain [2012]
including the autopilot module. The wind is modeled as a
constant wind field with added turbulence. The turbulence
is generated as white noise filtered through a Dryden
model, an approach presented by Langelaan et al. [2011]
and also used by Beard and Mclain [2012]. The Dryden
transfer functions for the wind turbulence are given by

Hu(s) = σu

√
2Va
Lu

1

s+ Va/Lu
(39)

Hv(s) = σv

√
3Va
Lv

(
s+ Va/(

√
3Lv)

)
(s+ Va/Lu)2

(40)

Hw(s) = σw

√
3Va
Lw

(
s+ Va/(

√
3Lw)

)
(s+ Va/Lw)2

(41)

where σu, σv, σw and Lu, Lv, Lw are the turbulence
intensities and spatial wavelengths along the vehicle frame
axes. For the simulations the Dryden model has been
implemented with a constant nominal airspeed Va = Va0 .
The gust model used is for a low altitude, moderate
turbulence gust with the parameters listed in Table 1. For

Table 1. Dryden gust model parameters used
in simulation.

altitude 50 m
Lu,Lv 200 m
Lw 50 m
σu,σv 2.12 m/s
σw 1.4 m/s
Va0 14 m/s

assessing the simulation results, the focus will be on the
estimates of the wind velocity and the AOA and SSA since
these variables are of primary interest with respect to using
the nonlinear wind observer in conjunction with a control
system or fault detection module. During simulations the
observer measurements have been used with the noise from
Appendix H and Chapter 7 in Beard and Mclain [2012]
on IMU measurements, pitot static probe measurements
and GNSS velocity measurements. For the GNSS velocity
measurement noise a std. dev. of 0.05 m has been used.
Since the noise on the estimate v̂bw is proportional to the
noise of the GNSS velocity measurement vn, the GNSS
velocity measurement has been filtered through a simple
observer. The observer gains are Kγ = 4 and Ku =
Kγ/u

m
r .

6.1 Simulation study I

During the first simulation the aircraft autopilot control
objectives are changed in steps. The aircraft control ob-
jectives start with an altitude of 50 m and and airspeed
command of 26 m/s. After 30 seconds the course command
control objective is increased by 10 degrees, where it stays
for the next 30 seconds. At time 90 s, the altitude control
objective is increased by 5 meters and once again decreased
after 30 seconds. At time 150 s until time 180 s the speed
control objective is increased from 26 m/s to 30 m/s.
In the middle of the simulation after 100 seconds the
airspeed measurement scaling factor γ steps from 1.0 to 1.1
to assess the scaling factor estimation capabilities of the
observer. The wind velocity and wind velocity estimation
is shown in Figure 2. The nonlinear wind observer displays
excellent estimation capabilities for the wind velocity along
the lateral axis of the aircraft. In the longitudinal and
vertical directions the observer is still able to provide
precise estimates of the wind velocity, but there appears
to be a small delay. Figure 3 shows the real AOA and
SSA variables along with the estimated ones, calculated
directly from the estimated relative velocity, along with the
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Fig. 2. Three plots showing the true values of the wind
along with their respective estimates from a simula-
tion with a maneuvering UAV.

airspeed measurement scaling factor. The wind observer
displays great capability in estimating the AOA. With the
SSA signal, which is noisy and centered around zero, it
is harder to assess the quality of the estimate, but it ap-
pears to follow the tendencies of the real value during the
moments of excitation. The airspeed measurement scaling
factor estimation shows good estimation capabilities and
converges quickly to the new value of the true variable.
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Fig. 3. Three plots showing the AOA, SSA and airspeed
measurement scaling factor true variables and their
respective estimates from a simulation with a maneu-
vering UAV.

6.2 Simulation study II

To assess the nonlinear wind observer under actuator un-
certainties, the second simulation includes a 10% mismatch
between values of the aircraft parameters in the wind ob-
server for the thrust force created by the propeller actuator
and the true model values. This is emulated as

fp,model = 1.1 · fptrue (42)

The simulation is conducted using the same autopilot
control inputs as in Simulation I, but without the change

in scaling factor. The simulation results are shown in
Figures 4 and 5. The nonlinear wind observer displays an
offset in the longitudinal wind velocity estimation, while
the estimates in the lateral and vertical directions have
only degraded mildly. The AOA estimate also appears to
be affected by a small offset, whereas the SSA estimates
displays similar performance to the former simulation.
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Fig. 4. Three plots showing the true values of the wind
velocity along with their respective estimates from a
simulation with an actuator uncertainty.
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Fig. 5. Three plots showing the AOA, SSA and airspeed
measurement scaling factor true variables and their
respective estimates from a simulation with propul-
sion model uncertainty.

7. CONCLUSIONS

In this paper a nonlinear wind observer for a UAV was
proposed. The wind observer combines a model of the
aircraft with a GNSS-aided INS including an attitude
observer and a pitot static probe. The nonlinear wind
observer provides estimates of both the wind velocity and
the relative velocity, from which the AOA and SSA are
computable. The nonlinear wind observer developed does
not have any requirements of PE of the aircraft. The non-
linear wind observer has been proven to be exponentially
stable and is verified through simulation.
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APPENDIX A

Lemma 1. (Aerodynamic forces). Under the assumptions
stated in Section 4.2 the aerodynamic forces τaero,1(vbr, t)
in (20) can be expressed as the sum of a linear and
nonlinear term according to:

τaero,1(vbr, t) = −D(t)vbr − d(vbr, t) (43)

Proof: Defining the longitudinal wind speed

Vlon ,
√
u2
r + w2

r (44)

By application of trigonometric relations

sin(α) = sin

(
tan−1

(
wr
ur

))
=

wr
Vlon

(45)

cos(α) = cos

(
tan−1

(
wr
ur

))
=

ur
Vlon

(46)

The following expressions for the aerodynamic forces are
based on linear theory and the assumption that Va ≈ Vlon

Hence,

β = sin−1

(
vr
Va

)
≈ vr
Va

(47)

The linear sway force in (21) for an aircraft that is
symmetrical about the xz-plane (CY0 = 0) then becomes:

CY0
+ CYββ = CYβ

vr
Va

(48)

Furthermore

α = sin−1

(
wr
Vlon

)
≈ wr
Va

(49)

CL(α) ≈ CL0
+ CLαα = CL0

+ CLα
wr
Va

(50)

CD(α) ≈ CD0
+ CDαα = CD0

+ CDα
wr
Va

(51)

and

CXδe (α)δe , (−CDδe cos(α) + CLδe sin(α))δe (52)

≈ (−CDδe
ur
Va

+ CLδe
wr
Va

)δe (53)

CZδe (α)δe , (−CDδe sin(α) − CLδe cos(α))δe (54)

≈ (−CDδe
wr
Va

− CLδe
ur
Va

)δe (55)

Hence, with abuse of notation we define a function
τaero(vbr, t), which depends on the state vbr and several
time-varying measurements all denoted by the single ar-
gument t as:

τaero,1(vbr, t) :=
1

2
ρSV 2

a

−CD(α) cos(α) + CL(α) sin(α)
CY0

+ CYββ
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1

2
ρV 2
a

CXq (α) c
2Va
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1

S
SpropCprop

0
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2Va
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=
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2
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a S
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)
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)
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)
wr
Va

−
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)
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ρV 2
a S
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ur
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)
c

2Va
q

0(
−CDq
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)
c

2Va
q
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+
1

2
ρV 2
a S

 (−CDδe
ur
Va

+ CLδe
wr
Va

)δe −
1

S
SpropCprop

0
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2Va
q + (−CDδe

wr
Va

− CLδe
ur
Va

)δe


(56)

Since the airspeed Va will be positive for any values of vbr
we rewrite Va as

Va = Va,min + ∆Va (57)

Combining (56) and (57) we obtain

τaero,1(vbr, t) = − 1

2
ρS

 σ1 0 −σ2

0 −CYβ 0

σ2 0 σ1


︸ ︷︷ ︸

D(t)

 urvr
wr



− 1

2
ρS

 CDαurwr − CLαw
2
r +

1

S
SpropCpropV

2
a + η1∆Va

0

CLαurwr + CDαw
2
r + η2∆Va


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d(vbr,t)

(58)

where

σ1 ,
(
CD0

+ CDδe δe
)
Va,min + CDqcq(t)/2

σ2 ,
(
CL0

+ CLδe δe
)
Va,min + CLqcq(t)/2
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APPENDIX B

Proof: From theorem 4.14 in Khalil [2002] we know there

exists a Lyapunov function Va(R̃) : R3×3 7→ R that
satisfies:

V̇a ≤ −c‖R̃‖2 (59)

for some c > 0. With an attitude estimate, instead of a
measurement, (26) should be replaced with:

m ˙̂vbr =− S(t)v̂br + τaero,1(v̂br, t) + τaero,2(t)

−mR̂>(t)gn −Kuh
(
h>v̂br − γ̂umr (t)

)
(60)

and the error dynamics instead becomes:

m ˙̃vbr =−D(t)ṽbr −
(
d(vbr, t)− d(v̂br, t)

)
+Kuh(umr (t)γ̃ − h>ṽbr) +mṽb>r R̃

>gn (61)



The time derivative of the Lyapunov function:

V̇ ≤ −
[
γ̃ ṽb>r

]
Q

[
γ̃
ṽbr

]
+mṽb>r R̃

>gn

≤ −λmin(Q)‖γ̃‖2 − λmin(Q)‖ṽb>r ‖2 +mg‖ṽbr‖‖R̃‖
(62)

where the time argument of Q has been omitted for
notational simplicity. Consider the augmented Lyapunov
function

W (γ̃, ṽbr, R̃) = V (γ̃, ṽbr) + κVa(R̃) (63)

where κ > 0. Hence,

Ẇ ≤− λmin(Q)‖γ̃‖2 − λmin(Q)‖ṽb>r ‖2

+mg‖ṽbr‖‖R̃‖ − κc‖R̃‖2

≤−
[
‖ṽbr‖ ‖R̃‖ ‖γ̃‖

]
H
[
‖ṽbr‖ ‖R̃‖ ‖γ̃‖

]>
(64)

where

H =


λmin(Q) −1

2
gm 0

−1

2
gm κc 0

0 0 λmin(Q)

 (65)

Hence, H is positive definite since κ can always be chosen
such that κ > g2m2/(4λmin(Q)c).

REFERENCES

Aamo, O.M., Arcak, M., Fossen, T.I., and Kokotovic, P.V.
(2001). Global output tracking control of a class of
Euler-Lagrange systems with monotonic non-linearities
in the velocities. International Journal of Control, 74(7),
649–658.

Beard, R.W. and Mclain, T.W. (2012). Small Unmanned
Aircraft - Theory and Practice. Princeton University
Press.

Brown, R.G. (1972). Integrated navigation systems and
Kalman filtering: a perspective. Journal of the Institute
of Navigation, 19, 355–362.

Cho, A., Kang, Y., Park, B., and Yoo, C. (2013). Airflow
angle and wind estimation using GPS/INS navigation
data and airspeed. In 2013 13th International Confer-
ence on Control, Automation and Systems, 1321–1324.

Cho, A., Kim, J., Lee, S., and Kee, C. (2011). Wind
estimation and airspeed calibration using a UAV with
a single-antenna GPS receiver and pitot tube. IEEE
Transactions on Aerospace and Electronic Systems,
47(1), 109–117.

Farrell, J.A. (2008). Aided Navigation: GPS with High
Rate Sensors. McGraw-Hill.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrody-
namics and Motion Control. Wiley.

Hansen, S. and Blanke, M. (2014). Diagnosis of air-
speed measurement faults for unmanned aerial vehicles.
IEEE Transactions on Aerospace and Electronic Sys-
tems, 50(1), 224–239.

Johansen, T.A., Cristofaro, A., Sørensen, K.L., Hansen,
J.M., and Fossen, T.I. (2015). On estimation of wind ve-
locity, angle-of-attack and sideslip angle of small UAVs
using standard sensors. In 2015 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), 510–519.
IEEE.

Khalil, H.K. (2002). Nonlinear Systems, Third Edition.
Prentice Hall.

Kumon, M., Mizumoto, I., Iwai, Z., and Nagata, M. (2005).
Wind Estimation by Unmanned Air Vehicle with Delta
Wing. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 1896–1901.
IEEE.

Langelaan, J.W., Alley, N., and Neidhoefer, J. (2011).
Wind Field Estimation for Small Unmanned Aerial
Vehicles. Journal of Guidance, Control, and Dynamics,
34(4), 1016–1030.

Lie, F.A.P. and Gebre-Egziabher, D. (2013). Synthetic Air
Data System. Journal of Aircraft, 50(4), 1234–1249.

Long, H. and Song, S. (2009). Method of estimating
angle-of-attack and sideslip angel based on data fusion.
In 2009 2nd International Conference on Intelligent
Computing Technology and Automation, ICICTA 2009,
volume 1, 641–644.

Paces, P., Draxler, K., Hanzal, V., Censky, T., and Vasko,
O. (2010). A combined angle of attack and angle
of sideslip smart probe with twin differential sensor
modules and doubled output signal. In 2010 IEEE
Sensors, 284–289. IEEE.

Ramprasadh, C. and Arya, H. (2012). Multistage-Fusion
Algorithm for Estimation of Aerodynamic Angles in
Mini Aerial Vehicle. Journal of Aircraft, 49(1), 93–100.

Rhudy, M.B., Larrabee, T., Chao, H., Gu, Y., and Napoli-
tano, M. (2013). UAV Attitude, Heading, and Wind
Estimation Using GPS/INS and an Air Data System.
In AIAA Guidance, Navigation, and Control (GNC)
Conference. American Institute of Aeronautics and As-
tronautics, Reston, Virginia.

Rodriguez, A., Andersen, E., Bradley, J., and Taylor, C.
(2007). Wind Estimation Using an Optical Flow Sensor
on a Miniature Air Vehicle. In AIAA Guidance, Nav-
igation and Control Conference and Exhibit. American
Institute of Aeronautics and Astronautics, Reston, Vi-
rigina.

Wenz, A.W., Johansen, T.A., and Cristofaro, A. (2016).
Combining model-free and model-based Angle of Attack
estimation for small fixed-wing UAVs using a standard
sensor suite. In International Conference on Unmanned
Aircraft Systems, submitted and accepted, Washington
DC.


