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SUMMARY

This paper proposes a linear parameter varying (LPV) interval unknown input observer (UIO) for the

robust fault diagnosis of actuator faults and ice accretion in unmanned aerial vehicles (UAVs) described

by an uncertain model. The proposed interval observer evaluates the set of values for the state which are

compatible with the nominal fault-free and icing-free operation, and can be designed in such a way that some

information about the nature of the unknown inputs affecting the system can be obtained, thus allowing the

diagnosis to be performed. The proposed strategy has several advantages. First, the LPV paradigm allows

taking into account operating point variations. Second, the noise rejection properties are enhanced by the

presence of the integral term. Third, the interval estimation property guarantees the absence of false alarms.

Linear matrix inequality (LMI)-based conditions for the analysis/design of these observers are provided in

order to guarantee the interval estimation of the state and the boundedness of the estimation. The developed

theory is supported by simulation results, obtained with the uncertain model of a Zagi Flying Wing UAV,

which illustrate the strong appeal of the methodology for identifying correctly unexpected changes in the

system dynamics due to actuator faults or icing. Copyright c© 2018 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Feedback control systems are vulnerable to malfunctions in actuators, sensors or other system

components, which may have catastrophic consequences, e.g. instability of the closed-loop system.

For this reason, fault tolerant control techniques have been investigated widely in the last decades,

with the aim of maintaining stability and acceptable performances in the event of faults [1]. As a

consequence, the problem of detecting and identifying faults has become a hot topic of research,

leading to the development of fault diagnosis techniques [2] with several proposed solutions,

involving geometric [3], observer-based [4] and multiple model [5] approaches, among others.

Icing, i.e. the accretion of ice on the aircrafts’ surfaces is one of the most critical faults

affecting aviation safety [6]. The aerodynamic consequences of icing (an increase in drag and a

decrease in lift) have a strong effect on the aircraft’s performances, inducing a safety risk that can

potentially lead to crashing [7]. In the case of small unmanned aerial vehicles (UAVs), some ice

protection systems have been proposed recently in order to mitigate or eliminate the icing, based

on heat conducting tapes [8] and electrically conductive carbon nanomaterial based coating for

temperature control of UAV airfoil surfaces [9, 10]. However, due to the large power consumption,

fault/icing detection schemes [11] with fast and accurate responses are needed for assuring high

efficiency. The approaches recently applied to icing detection in aircrafts and UAVs include multiple

models [12, 13], statistical methods [14], aerodynamic coefficient estimators [15] and environmental

monitoring [16].

Unknown input observers (UIOs) are a special class of observers which allow estimating the state

of a system independently of some unknown inputs [17]. UIOs are a very useful tool for achieving

a successful fault detection and isolation [18], because they can be made insensitive to certain input

space directions if some structural algebraic conditions on the system are fulfilled [19, 20]. This

property has been exploited in some recent works in order to perform fault/icing diagnosis. In [21],

a UIO-based diagnosis scheme able to decouple icing effects from actuators or sensors faults was

proposed for the longitudinal steady-state dynamics of a UAV. In [22], this approach was generalized

to the linear 6-DOF motion model with coupled longitudinal/lateral dynamics, and integrated with

a fault tolerant allocation scheme. A linear parameter varying (LPV) UIO-based icing diagnosis

scheme has been presented in [23], with the main advantage of being consistent with the UAV

dynamics for a wide range of operating conditions. Later, this work has been extended in [24],

where an LPV proportional integral UIO has been used, with the advantage of being more robust

against measurement noise.

All the aforementioned approaches share a common limitation, which is that they have been

developed under the assumption of having a perfectly known model available for fault diagnosis

purposes. However, it is well known that the presence of uncertainties coming from the mismatch
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between the model and the real system may impede the convergence of a classical observer to the

exact value of the state [25, 26, 27]. In this situation, the use of interval observers is attractive

because, under some assumptions, they can provide the set of admissible values for the state at

each instant of time [28]. Unlike stochastic approaches, such as the Kalman filter [29], interval

observers ignore any probability distribution at the sources of uncertainty, and assume that they are

constrained in a known bounded set. Using this information, instead of a single trajectory for each

state variable, the interval observer computes the lower and upper bounds, which are compatible

with the uncertainty [30]. A successful framework for interval observer design is based on the

monotone system theory, proposed at first by [31], and further investigated by [32, 33, 34].

The goal of this paper is to provide a framework for robust fault and icing diagnosis in UAVs,

obtained by merging the theory of interval observers with the theory of UIOs. In contrast to [24],

where the LPV UIO was obtained under the assumption that the model was perfectly known, in

this paper an uncertain longitudinal model of the UAV motion is employed. From a theoretical

point of view, the developed approach is an extension of the LPV interval UIO described in [35]

to the proportional integral case. The inclusion of an integral action is needed in order to avoid the

estimation error dynamics to be affected by the sensor noise derivative, which can take big values

due to the high-frequency content of the noise signal. Simulation results, obtained with the uncertain

model of a Zagi Flying Wing UAV, are used to show the effectiveness of the proposed approach.

The paper is structured as follows. Section 2 presents the notation and some preliminary

background. Section 3 describes the proportional integral interval observer which solves the

problem of interval state estimation without unknown input (detailing the green blocks in Fig. 1).

Section 4 shows how the interval observer can be designed in order to behave as a UIO (detailing

the violet blocks in Fig. 1). Section 5 introduces the nonlinear and quasi-LPV model of a UAV,

the description of the icing effects and the application of the proposed UIO to robust fault/icing

diagnosis (detailing the red blocks in Fig. 1). In Section 6, the proposed approach is illustrated

using simulation results obtained with the uncertain model of a Zagi Flying Wing UAV. Finally,

Section 7 summarizes the main conclusions.

2. NOTATION AND BACKGROUND

The set of (non-negative) real numbers will be denoted by R (R+). For a generic vector x ∈ Rnx , let

us define x+ = max{0,x}, where max denotes the elementwise maximum, x− = x+− x, and let us

denote the vector of absolute values of all elements by |x| = x++ x−. L nu
∞ will denote the set of

all signals u such that ‖u‖
∞
= sup{|u(t)| , t ∈ R+}< ∞. Given a matrix M ∈ Rm×n, He{M} will be

used as a shorthand notation for M+MT . For two vectors x1,x2 ∈ Rnx or matrices M1,M2 ∈ Rm×n,
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Figure 1. LPV UIO for the robust fault and icing diagnosis in UAVs.

the relations x1 ≤ x2 and M1 ≤ M2 are meant elementwise. The notation M† denotes the Moore-

Penrose pseudoinverse [36] of the matrix M ∈Rm×n. If M ∈Rn×n is symmetric, then M ∈ Sn×n. The

notation M ≺ 0 (M � 0) means that the matrix M ∈ Sn×n is negative (positive) definite. If M ∈ Sn×n

is diagonal, then M ∈ Dn×n. If all the elements of a matrix M ∈ Rn×n outside the main diagonal

are nonnegative, then M ∈Mn×n will be called a Metzler matrix. The notation ‖M‖2 denotes the

spectral norm of M, i.e. its largest singular value.

For a generic vector x ∈Rnx , its i-th element will be denoted by x(i). For a given matrix M ∈Rm×n

and a set of column indices N , with N a subset of {1, . . . ,nx}, the i-th column of M will be denoted

by M(i), while M(N ) will denote the matrix obtained from M by replacing all columns whose indices

do not belong to N with zeros. Also, the notation Π(M)x will denote the projection of x onto the

subspace generated by the columns of M. Given a set S , the notation P(S ) will denote the power

set of S , i.e. the set of all subsets of S , including the empty set and S itself. In order to ease the

notation, in many cases, the explicit dependence of the variables on time t is omitted.

3. INTERVAL STATE OBSERVATION WITHOUT UNKNOWN INPUT

3.1. Problem formulation

As recalled in the introduction, interval observers evaluate the set of admissible values for the

state at each time instant. In this section, the concept of interval observers will be extended

to a proportional integral structure. The observer will compute lower and upper bounds for the

state expressed in a time varying basis, i.e. transformed by a change of basis through a matrix

function R(ϑ) which depends on a varying parameter vector ϑ ∈Θ, containing exogenous variables,
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endogenous variables (e.g. states and/or inputs), or a combination of them, with Θ being a known

closed and bounded set. This change of basis will be of paramount importance in order to perform

a successful icing/fault diagnosis, as explained in the following sections. In general, the interval

observer will require the knowledge of ϑ̇ . However, as it will be discussed later, in the case of

fault/icing diagnosis, this requirement can be relaxed.

Let us consider a continuous-time LPV system, as follows:

ẋ = [A(ϑ)+∆A(ϑ)]x+[B(ϑ)+∆B(ϑ)]υ +[Bun(ϑ)+∆Bun(ϑ)]υun + k(ϑ)+d(ϑ) (1)

y = x+ v (2)

where x is the state vector, ν is the known input (control action), νun is the unknown input, k(ϑ) is a

known term, d(ϑ) is an unknown disturbance, y is the output vector and v is the measurement noise.

Remark 1: The case where the output equation is given by y = Cx + v with C full row R2-3
rank matrix can be considered following the ideas presented in [35], although at the cost of

increasing the mathematical complexity. In order to keep the formulation simple, such case

will not be detailed in this paper. On the other hand, a theoretical challenge for the approach

proposed in this paper is to consider the case in which the output matrix depends on the

varying parameters, i.e. y =C(θ)x+v. It is worth noting that, as long as the sensors’ dynamics

can be described by a state-space model with constant output and feedthrough matrices, i.e.:

ẋs = As(θ)xs +Bs(θ)x (3)

y =Csxs +Dsx (4)

then, the augmented system would satisfy: ẋ

ẋs

=

 A(ϑ)+∆A(ϑ) 0

Bs(ϑ) As(ϑ)

 x

xs

+

 ∗
0

 (5)

y =
(

Ds Cs

)(
x xs

)T
(6)

where ∗ denotes terms depending on υ , υun, k(ϑ) and d(ϑ), such that the above-mentioned

challenge would not exist. At the same time, a practical solution for the case where y =

C(ϑ)x+ v would be to postfilter the outputs, as suggested by [37].

Before stating the problem, let us introduce an assumption about the boundedness of disturbances,

noise and uncertainties.

Assumption 1. The signal v is such that |v| ≤V for all t ≥ 0 and some known V ∈Rnx . Moreover,

given an invertible and continuous matrix function R(ϑ) ∈ Rnx×nx , there exist dR(ϑ), dR(ϑ) ∈

L nx
∞ , ∆AR(ϑ), ∆AR(ϑ) ∈ Rnx×nx and ∆BR(ϑ), ∆BR(ϑ) ∈ Rnx×nυ , with ∆AR(ϑ),∆BR(ϑ) ≤ 0 and

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2018)

Prepared using rncauth.cls DOI: 10.1002/rnc



6

∆AR(ϑ),∆BR(ϑ)≥ 0, such that for all ϑ ∈Θ:

dR(ϑ)≤ R(ϑ)d(ϑ)≤ dR(ϑ) (7)

∆AR(ϑ)≤ ∆AR(ϑ) = R(ϑ)∆A(ϑ)R(ϑ)−1 ≤ ∆AR(ϑ) (8)

∆BR(ϑ)≤ R(ϑ)∆B(ϑ)≤ ∆BR(ϑ) (9)

Remark 2: The assumption that ∆AR(ϑ),∆BR(ϑ) ≤ 0 and ∆AR(ϑ),∆BR(ϑ) ≥ 0 is not strictly

needed, but allows keeping the mathematical formulation simple.

Problem 1: Given an invertible and continuous matrix function R(ϑ) ∈ Rnx×nx , determine an

LPV interval observer, which computes x and x such that:

xR = R(ϑ)x≤ xR = R(ϑ)x≤ xR = R(ϑ)x ∀t ≥ 0 (10)

with xR, xR ∈L nx
∞ , provided that:

xR(0)≤ xR(0)≤ xR(0) (11)

υun = 0 ∀t ≥ 0 (12)

and Assumption 1 holds.

3.2. LPV proportional integral interval observer

As discussed in [38, 39, 40], a limitation of purely proportional UIOs, as the one introduced in
[35], is that the resulting error dynamics is affected by the noise derivative, which takes big values
due to the high-frequency content of the noise signal. The introduction of an integral action allows
overcoming this limitation. Hence, the LPV interval observer proposed in order to solve Problem 1
is given by two coupled subsystems, i.e. a lower bound observer, which provides x, as follows:

ż =A(ϑ)z+B(ϑ)υ + k(ϑ)+A(ϑ)T (ϑ)w− Ṫ (ϑ)w+R(ϑ)−1 (dR(ϑ)−|R(ϑ)T (ϑ)K (ϑ)|V
)

+R(ϑ)−1 [
∆AR(ϑ)xR

+−∆AR(ϑ)xR
−+∆BR(ϑ)υ +−∆BR(ϑ)υ−

]
(13)

ẇ =K (ϑ)(y− x) (14)

x =z+T (ϑ)w (15)

and an upper bound observer, which provides x, as follows:

ż =A(ϑ)z+B(ϑ)υ + k(ϑ)+A(ϑ)T (ϑ)w− Ṫ (ϑ)w+R(ϑ)−1 (dR(ϑ)+
∣∣R(ϑ)T (ϑ)K (ϑ)

∣∣V)
+R(ϑ)−1 [

∆AR(ϑ)xR
+−∆AR(ϑ)xR

−+∆BR(ϑ)υ +−∆BR(ϑ)υ−
]

(16)

ẇ =K (ϑ)(y− x) (17)

x =z+T (ϑ)w (18)
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where T (ϑ),T (ϑ),K(ϑ),K(ϑ)∈Rnx×nx are the interval observer gains, while Ṫ (ϑ) and Ṫ (ϑ) can

be obtained from T (ϑ) and T (ϑ) by differentiating each element with respect to time†.

It can be seen that the estimated bounds calculated as (15) and (18) are an appropriate combination

of the proportional action, given by (13) and (16), and the integral action, given by (14) and (17).

Remark 3: The terms post-multiplying R(ϑ)−1 in (13) and (16) take into account the known

bounds of disturbances, noise and uncertainties, in order to provide an interval estimation of the

state transformed through the parameter varying matrix function R(ϑ).

The following theorem provides the conditions which should be satisfied by the gains K(ϑ),

K(ϑ), T (ϑ) and T (ϑ) to ensure an interval estimation of xR and the boundedness of xR, xR, as

specified in Problem 1.

Theorem 1

Let Assumption 1 be satisfied, x ∈L nx
∞ , υ ∈L nυ

∞ , k ∈L nx
∞ , the matrix function R(ϑ) be invertible,

and the proportional integral interval observer be given by (13)-(18). Then, if there exist matrix

functions K(ϑ), K(ϑ), T (ϑ), T (ϑ) ∈ Rnx×nx such that:

F (ϑ) =
[
R(ϑ)A(ϑ)−R(ϑ)T (ϑ)K(ϑ)+ Ṙ(ϑ)

]
R(ϑ)−1 ∈Mnx×nx (19)

F (ϑ) =
[
R(ϑ)A(ϑ)−R(ϑ)T (ϑ)K(ϑ)+ Ṙ(ϑ)

]
R(ϑ)−1 ∈Mnx×nx (20)

the relation (10) is satisfied provided that (11)-(12) hold.

In addition, if there exist P,Q ∈ S2nx×2nx , P,Q � 0 and constants ε1,ε2,γ > 0 such that the

following matrix inequality is verified:

Φ(ϑ) =

 G(ϑ)T P+PG(ϑ)+(ε1 + ε2)P+Q+ γη(ϑ)2I2nx 0

0 ε
−1
1 P− γI2nx

� 0 (21)

where:

η(ϑ) = 2
(∥∥∆AR(ϑ)

∥∥
2 +
∥∥∆AR(ϑ)

∥∥
2

)
(22)

G(ϑ) =

 F(ϑ) 0

0 F(ϑ)+∆AR(ϑ)

 (23)

then xR, xR ∈L nx
∞ .

Remark 4: The theorem statement consists of two parts. Eqs. (19)-(20) guarantee that, at each

instant of time, the true state of the LPV system described by (2) and (1) will lie inside the region

defined by the lower and upper estimates. On the other hand, the feasibility of the matrix inequality

†In general, Ṫ and Ṫ will depend also on ϑ̇ . However, since an augmented varying parameter vector made up by

ϑ and ϑ̇ could be considered for further reasoning, the dependence of a matrix on ϑ̇ will be left implicit to ease the

notation.
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(21) ensures that such estimates will remain bounded, i.e. they will not diverge. Also in this case,

Ṙ(ϑ) can be obtained from R(ϑ) by differentiating each of its elements with respect to time.

Proof of Theorem 1: Let us consider the dynamics of the interval estimation errors e =

R(ϑ)(x− x) = xR−xR and e = R(ϑ)(x− x) = xR−xR which, taking into account (1)-(2) and (13)-

(18), become:

ė =F (ϑ)e+R(ϑ)(Bun (ϑ)+∆Bun (ϑ))υun +
4

∑
i=1

ϖi (24)

ė =F (ϑ)e−R(ϑ)(Bun (ϑ)+∆Bun (ϑ))υun +
4

∑
i=1

ϖi (25)

where F(ϑ) and F(ϑ) are defined as in (19)-(20) and ϖi, i = 1, . . . ,4, are given by (similar

expressions hold for ϖi, i = 1, . . . ,4):

ϖ1 = |R(ϑ)T (ϑ)K(ϑ)|V −R(ϑ)T (ϑ)K(ϑ)v (26)

ϖ2 = R(ϑ)d(ϑ)−dR(ϑ) (27)

ϖ3 = ∆AR(ϑ)xR +∆AR(ϑ)xR
−−∆AR(ϑ)xR

+ (28)

ϖ4 = R(ϑ)∆B(ϑ)υ +∆BR(ϑ)υ−−∆BR(ϑ)υ + (29)

When (12) holds, since F (ϑ) ,F (ϑ) ∈ Mnx×nx , then any solution of (24)-(25) is elementwise

nonnegative for all t ≥ 0, i.e. (10), provided that e(0) ≥ 0, e(0) ≥ 0, ϖi ≥ 0 and ϖi ≥ 0 ∀t ≥ 0,

∀i= 1,2,3,4 [41]. e(0)≥ 0 and e(0)≥ 0 hold due to (11). The terms ϖi, ϖi, i= 1,2, are nonnegative

∀t ≥ 0 due to Assumption 1 (see (7)). On the other hand, ϖ3, ϖ3 remain nonnegative as long as (10)

holds, according to the results in [26] and Assumption 1 (see (8)). (10) holds for t = 0, due to

e(0)≥ 0, e(0)≥ 0, and (10) is preserved ∀t ≥ 0 by induction, as long as ϖ4, ϖ4 remain nonnegative

too. Indeed, also ϖ4, ϖ4 remain nonnegative because of the results in [26] and Assumption 1 (see

(9)).

Let us show that the variables xR and xR stay bounded ∀t ≥ 0. For this purpose, let us rewrite the

equations that rule the dynamics of xR and xR as:

ξ̇ = G(ϑ)ξ +φ(ξ )+δ

where ξ =
(
xR,xR

)T , φ(ξ ) =
(

f (xR,xR), f (xR,xR)
)T and δ =

(
δ ,δ

)T
, with (similar expressions

hold for f (xR,xR) and δ ):

f (xR,xR) = ∆AR(ϑ)xR
+−∆AR(ϑ)xR

−

δ = R(ϑ)T (ϑ)K(ϑ)y−|R(ϑ)T (ϑ)K(ϑ)|V +R(ϑ)B(ϑ)υ

+R(ϑ)k(ϑ)+dR(ϑ)+∆BR(ϑ)υ +−∆BR(ϑ)υ−

Notably, for all ϑ ∈Θ:

|φ(ξ )| ≤ η(ϑ) |ξ |
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with η(ϑ) given by (22), while the inputs δ , δ are bounded by Assumption 1 and the fact that

x ∈L nx
∞ , υ ∈L nυ

∞ , k ∈L nx
∞ . Then, by considering a Lyapunov function V = ξ T Pξ and through

input to state stability reasoning [42], it follows that if (21) holds, then xR, xR ∈L nx
∞ . �

Remark 5: For illustrative purposes, let us consider a lower bound proportional observer given
by:

ż = A(ϑ)z+B(ϑ)υ + k(ϑ)+A(ϑ)T (ϑ)y− Ṫ (ϑ)y+R(ϑ)−1 (dT (ϑ)−|R(ϑ)T (ϑ)| v̇max
)

+R(ϑ)−1 [
∆AT (ϑ)xR

+−∆AT (ϑ)xR
−+∆BT (ϑ)υ +−∆BT (ϑ)υ−

]
−T (ϑ) [A(ϑ)x+B(ϑ)υ + k(ϑ)]

x = z+T (ϑ)y

where v̇max is a known bound on the noise derivative v̇. It can be shown that, under conditions

similar to those of Assumption 1, the estimation error with νun = 0 obeys:

ė = FT (ϑ)e+
4

∑
i=1

ϖT,i

with:

FT (ϑ) =
[
R(ϑ)(I−T (ϑ))A(ϑ)+ Ṙ(ϑ)

]
R(ϑ)−1

and terms ϖT,i which are akin to ϖi as defined in (26)-(29), with the relevant difference that terms v̇

and v̇max appear instead of v and V , which would lead to very conservative estimated bounds for the

state.

3.3. Design conditions

Given the matrix functions K(ϑ),K(ϑ),T (ϑ),T (ϑ) (interval observer gains), the conditions

provided by Theorem 1, i.e. (19)-(21), allow analysing whether or not the observer (13)-(18)

will provide a bounded interval estimation of the state. At the expense of introducing some

conservativeness, it is possible to derive conditions for performing the design, i.e. for the case where

K(ϑ), K(ϑ), T (ϑ), T (ϑ) are not given, such that they are obtained as part of the solution of the

LMIs. This can be done using the following corollary.

Corollary 1

Let Assumption 1 be satisfied, x ∈ L nx
∞ , υ ∈ L nυ

∞ , k ∈ L nx
∞ , and the matrix function R(ϑ) be

invertible. Also, let us assume that there exist an elementwise nonnegative matrix:

P =

 P 0

0 P

 (30)

with P,P ∈ Snx×nx , P,P� 0, a matrix function:

W (ϑ) =

 W (ϑ) 0

0 W (ϑ)


Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2018)
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with W (ϑ),W (ϑ) ∈ Rnx×nx , a matrix Q ∈ S2nx×2nx , a sufficiently large matrix function Σ(ϑ) ∈

D2nx×2nx
+ and constants ε1,ε2,γ > 0 such that: He{PΞ(ϑ)−W (ϑ)ϒ(ϑ)}+(ε1 + ε2)P+Q+ γη(ϑ)2I2nx 0

0 ε
−1
1 P− γI2nx

� 0 (31)

P

 [
R(ϑ)A(ϑ)+ Ṙ(ϑ)

]
R(ϑ)−1 0

0
[
R(ϑ)A(ϑ)+ Ṙ(ϑ)

]
R(ϑ)−1

−W (ϑ)ϒ(ϑ)+PΣ(ϑ)≥ 0

(32)
with η(ϑ) defined as in (22) and:

Ξ(ϑ) =

(
R(ϑ)A(ϑ)R(ϑ)−1 + Ṙ(ϑ)R(ϑ)−1 0

0 R(ϑ)A(ϑ)R(ϑ)−1 + Ṙ(ϑ)R(ϑ)−1 +∆AR(ϑ)

)

ϒ(ϑ) =

 CR(ϑ)−1 0

0 CR(ϑ)−1


Then, the proportional integral interval observer (13)-(18) with matrices K(ϑ), K(ϑ), T (ϑ), T (ϑ)

satisfying:  T (ϑ)K(ϑ) 0

0 T (ϑ)K(ϑ)

=

 R(ϑ) 0

0 R(ϑ)

−1

P−1W (ϑ) (33)

is such that the relation (10) holds provided that (11)-(12) are satisfied, with xR,xR ∈L nx
∞ .

Proof of Corollary 1: The matrix inequality (31) can be obtained easily from (21) through

the change of variables W (ϑ) = diag
(
PR(ϑ)T (ϑ)K(ϑ),PR(ϑ)T (ϑ)K(ϑ)

)
, which explains why

K(ϑ), K(ϑ), T (ϑ), T (ϑ) are calculated as (33). On the other hand, (32) corresponds to the

verification of the Metzler property (19)-(20) [25]. �

Remark 6: It must be pointed out that both Theorem 1 and Corollary 1 rely on the satisfaction

of infinite conditions. However, this difficulty can be overcome by gridding Θ using N points ϑi,

i = 1, . . . ,N. Then, once ε1 and ε2 have been chosen, the analysis/design problem reduces to finding

a feasible solution of a set of LMIs, which can be done efficiently using available solvers, e.g.

YALMIP/SeDuMi [43, 44]. By relying on the gridding approach, the theoretical properties would

be guaranteed only for ϑ = ϑi, i = 1, . . . ,N, i.e. at the gridding points. However, from a practical

point of view, it is reasonable to assume that if the gridding of Θ is dense enough, then they would

still hold at operating points different from the gridding ones. A deep theoretical study of this fact

is possible using the results developed by [45].

Remark 7: An alternative approach for calculating the matrices F(ϑ) and F(ϑ) consists in

designing them to obtain boundedness of the estimated bounds, and then performing a similarity

transformation such that in the new coordinates the resulting matrices are Metzler. The conditions

of existence of such transformation can be derived following the reasoning in [34].
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4. INTERVAL UNKNOWN INPUT OBSERVER

4.1. Problem formulation

The change of basis performed using the parameter varying matrix function R(ϑ) is relevant to

obtain the decoupling between the effects of the unknown inputs νun and solve the problem of

unknown input observation. In this way, it will be possible to detect the presence of unknown inputs

acting on the system, as well as to identify their nature (isolation). Before stating the problem, let us

introduce an additional assumption concerning the boundedness of signals and uncertainties related

to the unknown inputs.

Assumption 2. The signal υun is such that:

υun ≤ υun ≤ υun (34)

with υun ≤ 0 and υun ≥ 0, υun,υun ∈ L nυ
∞ . Moreover, given an invertible and continuous matrix

function R(ϑ) ∈ Rnx×nx , there exist ∆Bun,R(ϑ), ∆Bun,R(ϑ) ∈ Rnx×nυun , with ∆Bun,R(ϑ) ≤ 0,

∆Bun,R(ϑ)≥ 0, such that for all ϑ ∈Θ:

∆Bun,R(ϑ)≤ R(ϑ)∆Bun(ϑ)≤ ∆Bun,R(ϑ) (35)

Problem 2. Given S ∈ Rnx×nυun full column rank, such that there exists an invertible matrix

function R(ϑ) ∈ Rnx×nx for which the following holds:

R(ϑ)Bun(ϑ) = S ∀ϑ ∈Θ (36)

and provided that (11) and Assumptions 1-2 hold, determine an LPV proportional integral interval

unknown input observer which, in addition to solve Problem 1, satisfies:

υ
( j)
un = 0 ⇒ Π(S( j))ε ≥ 0 ∧ Π(S( j))ε ≥ 0 (37)

Π(S( j))ε < 0 ∨ Π(S( j))ε < 0 ⇒ υ
( j)
un , 0 (38)

where ε and ε are evaluable signals that can be used as unknown input isolation signals, and are

given by:

ε =R(ϑ)(y− x)−|R(ϑ)|V (39)

ε =R(ϑ)(x− y)−|R(ϑ)|V (40)

In other words, Problem 2 concerns the isolation of faults, which can be represented by the

unknown input υun in (1). The idea consists in assigning different directions of residuals for each

element of the vector υun, and choosing the interval observer in order to guarantee that, if the

component of at least one value between ε and ε along the direction specified by the j-th column of
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the matrix S becomes negative, then the j-th element of the vector υun must be necessarily different

from zero, which allows detecting and isolating the unknown input.

Remark 8: Note that the values ε = 0 and ε = 0 can be interpreted as thresholds [46] that the

residuals will not exceed as long as the unknown inputs are not acting on the system. Due to the R2-4
use of an interval observer formulation, the proposed approach is naturally robust against

uncertainties and noise, as long as they satisfy Assumptions 1-2. However, defining a residual

evaluation function over a finite time window, as discussed deeply in [47, 48], could help in

increasing the overall robustness when the proposed approach is applied under conditions for

which Assumptions 1-2 do not hold strictly.

4.2. LPV proportional integral UIO

Looking at (24)-(25), and recalling (36), it is evident that when ∆Bun(ϑ) = 0, in order to achieve

this property, the columns of S should correspond to eigenvectors of the matrices F(ϑ), F(ϑ), and

the terms ϖ i, ϖ i should maintain nonnegativity despite a possible change in the sign of ε and/or

ε . This last property, which is not necessary for fault detection, but is fundamental to achieve fault

isolation, requires a slight modification of the interval observer structure provided in (13)-(18). On

the other hand, a further modification of (13)-(18) is performed to embed the term R(ϑ)∆Bun(ϑ)υun

into nonnegative terms that will be referred to as ϖ5 and ϖ5.
The following LPV proportional integral interval unknown input observer is proposed to solve

Problem 2:

ξ̇ =ż+A(ϑ)(ξ − z)+R(ϑ)−1
nx

∑
i=1

1− sign
(

ε(i)
)

2
∆A(i)

R (ϑ)
(

xR
(i)−−

˜
x(i)R
−)

(41)

+
1− sign

(
ε
(i)
)

2
∆A(i)

R (ϑ)
(

x̃(i)R
+
− xR

(i) +
)+R(ϑ)−1

[
∆Bun,R(ϑ)υun

+−∆Bun,R(ϑ)υun
−
]

x =ξ +T (ϑ)w (42)

ξ̇ =ż+A(ϑ)
(

ξ − z
)
+R(ϑ)−1

nx

∑
i=1

1− sign
(

ε
(i)
)

2
∆A(i)

R (ϑ)
(

x̃(i)R
+
− xR

(i) +
)

(43)

+
1− sign

(
ε(i)
)

2
∆A(i)

R (ϑ)
(

xR
(i)−−

˜
x(i)R
−)+R(ϑ)−1

[
∆Bun,R(ϑ)υun

+−∆Bun,R(ϑ)υun
−
]

x =ξ +T (ϑ)w (44)

where ż, w, ż, w, ε and ε are given by (13)-(14), (16)-(17) and (39)-(40), and:

˜
xR =R(ϑ)y−|R(ϑ)|V

x̃R =R(ϑ)y+ |R(ϑ)|V
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The following lemma provides the conditions which should be satisfied by the gains

K(ϑ),K(ϑ),T (ϑ) and T (ϑ) in order to ensure an interval estimation of xR and the boundedness of

xR, xR, as specified in Problem 1.

Lemma 1

Let Assumptions 1-2 be satisfied, x ∈L nx
∞ , υ ∈L nυ

∞ , k ∈L nx
∞ , the matrix R(ϑ) be invertible, and

the proportional integral interval unknown input observer be given by (13)-(14), (16)-(17) and (41)-

(44). Then, if there exist matrix functions K(ϑ), K(ϑ), T (ϑ), T (ϑ)∈Rnx×nx such that F(ϑ), F(ϑ),

defined as in (19)-(20) are Metzler, the relation (10) is satisfied provided that (11)-(12) hold.
In addition, if there exist P,Q ∈ S2nx×2nx , P,Q � 0 and constants ε1,ε2,γ > 0 such that the

following matrix inequality is verified ∀S1,S2 ∈P({1, . . . ,nx}):

Φ(ϑ ,S1,S2) =

(
G(ϑ ,S2)

T P+PG(ϑ ,S2)+(ε1 + ε2)P+Q+ γη(ϑ ,S1,S2)
2I2nx 0

0 ε
−1
1 P− γI2nx

)
� 0 (45)

where:

η(ϑ ,S1,S2) =
∥∥∥∆AS1

R (ϑ)
∥∥∥

2
+
∥∥∥∆AS1

R (ϑ)
∥∥∥

2
+
∥∥∥∆AS2

R (ϑ)
∥∥∥

2
+
∥∥∥∆AS2

R (ϑ)
∥∥∥

2
(46)

G(ϑ ,S2) =

 F(ϑ) 0

0 F(ϑ)+∆AS2
R (ϑ)

 (47)

then xR, xR ∈L nx
∞ .

Similarly to Theorem 1, the matrix inequality (45) is needed to ensure that the lower and upper

estimates provided by the interval observer will remain bounded despite the modifications in the

structure of the observer due to changes in the signs of ε(i), ε
(i), i = 1, . . . ,nx. This fact will be

further detailed in the proof of Lemma 1.

Proof of Lemma 1: By using the interval unknown input observer (13)-(14), (16)-(17) and (41)-

(44), the dynamics of the interval estimation errors e, e follow:

ė =F (ϑ)e+R(ϑ)Bun (ϑ)υun +
5

∑
i=1

ϖi (48)

ė =F (ϑ)e−R(ϑ)Bun (ϑ)υun +
5

∑
i=1

ϖi (49)

where ϖi, ϖi, i = 1,2,4, are as in the proof of Theorem 1, and (similar expressions hold for ϖ3 and
ϖ5):

ϖ3 =
nx

∑
i=1

∆A(i)
R (ϑ)x(i)R +∆A(i)

R (ϑ)xR
(i)−−∆A(i)

R (ϑ)xR
(i) ++

1− sign
(

ε(i)
)

2
∆A(i)

R (ϑ)
(

˜
x(i)R
−
− xR

(i)−
)

−
nx

∑
i=1

1− sign
(

ε
(i)
)

2
∆A(i)

R (ϑ)
(

x̃(i)R
+
− xR

(i) +
)

(50)

ϖ5 = R(ϑ)∆Bun (ϑ)υun +∆Bun,R(ϑ)υun
−−∆Bun,R(ϑ)υun

+ (51)
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As it has already been discussed, the terms ϖi, ϖi, i = 1,2,4 are nonnegative due to Assumption 1

and (11). Let us show that ϖ3 ≥ 0 (ϖ3 ≥ 0 can be demonstrated in a similar fashion) by noticing that

if ε(i) ≥ 0 and ε
(i) ≥ 0, the i-th terms in (50) equal the i-th terms in (28), such that nonnegativity is

assured as long as xR
(i) ≤ x(i)R ≤ xR

(i). This is necessarily true, since from (2), it follows that:

xR− xR = R(ϑ)(y− x− v)

xR− xR = R(ϑ)(x− y+ v)

Applying the results in [26] and taking into account that |v| ≤ V (see Assumption 1), it follows

that −|R(ϑ)|V ≤ v≤ |R(ϑ)|V , which leads to:

xR− xR ∈ [ε,R(ϑ)(y− x)+ |R(ϑ)|V ]

xR− xR ∈ [ε,R(ϑ)(x− y)+ |R(ϑ)|V ]

Hence, x(i)R − xR
(i) ≥ ε(i) ≥ 0 and xR

(i)− x(i)R ≥ ε
(i) ≥ 0, which assures nonnegativity of the i-th

terms in (50) for ε(i) ≥ 0 and ε
(i) ≥ 0.

Let us consider the case when ε(i) < 0 (the case when ε
(i) < 0 follows a similar reasoning, thus it

is omitted). When ε(i) < 0, the i-th terms in (50) become the following:

∆A(i)
R (ϑ)x(i)R +∆A(i)

R (ϑ)
˜
x(i)R
−
−∆A(i)

R (ϑ)xR
(i) +

which are positive if
˜
x(i)R ≤ x(i)R ≤ xR

(i). It is straightforward that x(i)R ≤ xR
(i) due to ε

(i) ≥ 0. On the

other hand, from (2), it follows that:

xR = R(ϑ)(y− v)

that, taking into account that −|R(ϑ)|V ≤ v≤ |R(ϑ)|V , leads to:

xR ∈ [
˜
xR, x̃R]

which proves that x(i)R ≥ ˜
x(i)R , so that ϖ3 (similarly, ϖ3) is nonnegative. Also, the nonnegativity of ϖ5,

ϖ5 follows directly from Assumption 2 and the results in [26]. Then, since F(ϑ),F(ϑ) ∈Mnx×nx ,

any solution of (24)-(25) with υun = 0 is elementwise nonnegative for all t ≥ 0.

Let us show that the variables xR and xR stay bounded ∀t ≥ 0. Without loss of generality, let us

consider the case where: ε(i) < 0 i ∈N1

ε(i) ≥ 0 i ∈S1

 ε
(i) < 0 i ∈N2

ε
(i) ≥ 0 i ∈S2

with N1∩S1 = /0, N2∩S2 = /0 and N1∪S1 = N2∪S2 = {1, . . . ,nx}. In this case, the equations

that rule the dynamics of xR and xR can be written as:

ẋR = F(ϑ)xR +g
(
xR,xR

)
+δ

ẋR =
(

F(ϑ)+∆AS2
R (ϑ)

)
xR +g

(
xR,xR

)
+δ
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where (similar expressions hold for g(xR,xR) and δ ):

g(xR,xR) = ∆AS2
R (ϑ)xR

+−∆AS1
R (ϑ)xR

−

δ = R(ϑ)T (ϑ)K(ϑ)y−|R(ϑ)T (ϑ)K(ϑ)|V +R(ϑ)B(ϑ)υ +R(ϑ)k(ϑ)+dR(ϑ)

+∆A(N2)
R (ϑ)x̃R

+−∆A(N1)
R (ϑ)

˜
xR
−+∆BR(ϑ)υ +−∆BR(ϑ)υ−

+∆Bun,R(ϑ)υun
+−∆Bun,R(ϑ)υun

−

Also in this case, similarly to the proof of Theorem 1, for all ϑ ∈Θ:

|φg(ξ )| ≤ η(ϑ ,S1,S2) |ξ |

with η(ϑ ,S1,S2) given by (46), while the inputs δ and δ are bounded because of Assumptions

1-2, and the fact that x ∈L nx
∞ , υ ∈L nυ

∞ , k ∈L nx
∞ and |v| ≤ V . Hence, it can be shown through a

Lyapunov function V = ξ T Pξ and input to state reasoning [42] that if (45) holds, then xR,xR ∈L nx
∞ .

Since the indices contained in the sets S1 and S2 are not known a priori, it follows that (45) should

hold ∀S1,S2 ∈P({1, . . . ,nx}) in order to guarantee the boundedness of xR and xR, thus completing

the proof. �

At this point, using Lemma 1, the following theorem provides the conditions which should be

satisfied by the gains K(ϑ),K(ϑ),T (ϑ) and T (ϑ) in order to solve Problem 2.

Theorem 2

Given the matrix S ∈ Rnx×nυun , let Assumptions 1-2 be satisfied, x ∈ L nx
∞ , υ ∈ L nυ

∞ , k ∈ L nx
∞ ,

the matrix function R(ϑ) be such that (36) holds, and the proportional integral interval unknown

input observer be given by (13)-(14), (16)-(17) and (41)-(44). Then, if there exist matrix functions

Γ(ϑ),Γ(ϑ)∈Dnυun×nυun and matrix functions S∗(ϑ),S∗(ϑ)∈Rnx×nx such that F(ϑ),F(ϑ), defined

as in (19)-(20), with:

T (ϑ)K(ϑ) =
[
A(ϑ)R(ϑ)−1S+R(ϑ)−1Ṙ(ϑ)R(ϑ)−1S−R(ϑ)−1SΓ(ϑ)

]
Bun(ϑ)† (52)

+S∗(ϑ)
[
I−Bun(ϑ)Bun(ϑ)†]

T (ϑ)K(ϑ) =
[
A(ϑ)R(ϑ)−1S+R(ϑ)−1Ṙ(ϑ)R(ϑ)−1S−R(ϑ)−1SΓ(ϑ)

]
Bun(ϑ)† (53)

+S∗(ϑ)
[
I−Bun(ϑ)Bun(ϑ)†]

are Metzler, then the relations (37)-(38) are satisfied provided that (11) holds. Moreover, if (12)

holds, then also (10) is satisfied.

In addition, if there exist P ∈ S2nx×2nx , P � 0, Q ∈ S2nx×2nx , Q � 0 and constants ε1,ε2,γ > 0

such that (45), with η(ϑ ,S1,S2) and G(ϑ ,S2) defined as in (46)-(47), is verified ∀S1,S2 ∈

P({1, . . . ,nx}), then xR, xR ∈L nx
∞ .

Proof of Theorem 2: As shown previously, by using the unknown input interval observer (13)-

(14), (16)-(17) and (41)-(44), the dynamics of the interval estimation errors e, e follow (48)-(49).
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Looking at (36), it is straightforward that for guaranteeing (10) and (37)-(38), in addition to the

conditions of Lemma 1, the columns of S need to correspond to eigenvectors of the matrices F(ϑ)

and F(ϑ), i.e.:

F(ϑ)S = SΓ(ϑ) (54)

F(ϑ)S = SΓ(ϑ) (55)

where Γ(ϑ),Γ(ϑ) ∈ Rnυun×nυun contain some of the eigenvalues of F(ϑ),F(ϑ) (the ones that

correspond to the eigenvectors that are columns of S).

Taking into account (36) and (19)-(20), it is easy to see that (54)-(55) are equivalent to:

T (ϑ)K(ϑ)Bun(ϑ) = A(ϑ)R(ϑ)−1S+R(ϑ)−1Ṙ(ϑ)R(ϑ)−1S−R(ϑ)−1SΓ(ϑ)

T (ϑ)K(ϑ)Bun(ϑ) = A(ϑ)R(ϑ)−1S+R(ϑ)−1Ṙ(ϑ)R(ϑ)−1S−R(ϑ)−1SΓ(ϑ)

whose solutions can be expressed as (52)-(53), which completes the proof. �

4.3. Design conditions

Also in this case, it is possible to derive conditions for performing the design, as specified by the

following corollary.

Corollary 2

Given the matrix S ∈ Rnx×nυun , let Assumptions 1-2 be satisfied, x ∈L nx
∞ , υ ∈L nυ

∞ , k ∈L nx
∞ and

the matrix function R(ϑ) be such that (36) holds. Also, let us assume that there exist an elementwise

nonnegative block-diagonal matrix P as in (30), with P,P ∈ Snx×nx , P,P� 0, a matrix function:

WS(ϑ) =

 W S(ϑ) 0

0 W S(ϑ)


with WS(ϑ),WS(ϑ)∈Rnx×nx , a matrix Q∈ S2nx×2nx , a sufficiently large matrix function Σ∈D2nx×2nx

+

and constants ε1,ε2,γ > 0 such that:(
He{PΞ(ϑ ,S2)+WS(ϑ)ϒ∗(ϑ)}+(ε1 + ε2)P+Q+ γη(ϑ ,S1,S2)

2I2nx 0

0 ε
−1
1 P− γI2nx

)
� 0 (56)

P

 Ξ(ϑ) 0

0 Ξ(ϑ ,S2)−∆AS2
R (ϑ)

−WS(ϑ)ϒ∗(ϑ)+PΣ(ϑ)≥ 0 (57)

with η(ϑ ,S1,S2) defined as in (46) and:

Ξ(ϑ ,S2) =

 Ξ(ϑ) 0

0 Ξ(ϑ ,S2)


ϒ
∗(ϑ) =

 (
I−Bun(ϑ)Bun(ϑ)†

)
R(ϑ)−1 0

0
(
I−Bun(ϑ)Bun(ϑ)†

)
R(ϑ)−1


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Ξ(ϑ) = R(ϑ)A(ϑ)R(ϑ)−1 (I−SBun(ϑ)†R(ϑ)−1)+ Ṙ(ϑ)R(ϑ)−1

+
(
SΓ(ϑ)− Ṙ(ϑ)R(ϑ)−1S

)
Bun(ϑ)†R(ϑ)−1

Ξ(ϑ ,S2) = R(ϑ)A(ϑ)R(ϑ)−1 (I−SBun(ϑ)†R(ϑ)−1)+ Ṙ(ϑ)R(ϑ)−1

+
(
SΓ(ϑ)− Ṙ(ϑ)R(ϑ)−1S

)
Bun(ϑ)†R(ϑ)−1 +∆AS2

R (ϑ)

Then, the proportional integral interval unknown input observer (13)-(14), (16)-(17) and (41)-(44)

with matrices satisfying (52)-(53), with:

 S∗(ϑ) 0

0 S∗(ϑ)

=

 PR(ϑ) 0

0 PR(ϑ)

−1

WS(ϑ) (58)

is such that the relations (37)-(38) are satisfied provided that (11) holds. Moreover, if (12) holds,

then also (10) is satisfied, with xR,xR ∈L nx
∞ .

Proof of Corollary 2: (56) can be obtained from (45) through the change of variables:

WS(ϑ) =

 PR(ϑ)S∗(ϑ) 0

0 PR(ϑ)S∗(ϑ)

 (59)

which explains why S∗(ϑ) and S∗(ϑ) are calculated as in (58). On the other hand, (57) corresponds

to the verification of the Metzler property [25]. �

Also in this case, the infinite number of conditions given by Theorem 2 and Corollary 2 can be

brought to a finite number by gridding the varying parameter space Θ using N points ϑi, i= 1, . . . ,N.

The details are skipped for the sake of brevity.

5. APPLICATION TO THE UAV

5.1. Nonlinear model

The longitudinal equations of a UAV, under normal flight conditions (low angle-of-attack) consist of

two equations for the airspeed components (u and w, i.e. the horizontal and the vertical components,
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respectively), an equation for the pitch rate q and an equation for the pitch angle θ [49]:

u̇ =−qw−gsinθ +
ρV 2

a S
2m

[
−(CD0 +CDα

α)cosα +(CL0 +CLα
α)sinα (60)

+(CLq sinα−CDq cosα)
cq
2Va

+(CLδe
sinα−CDδe

cosα)δe

]
+

ρSpropCprop

2m
(k2

mδ
2
t −V 2

a )

ẇ =qu+gcosθ +
ρV 2

a S
2m

[
−(CD0 +CDα

α)sinα− (CL0 +CLα
α)cosα (61)

−(CDq sinα +CLq cosα)
cq
2Va
− (CDδe

sinα +CLδe
cosα)δe

]
q̇ =

ρV 2
a Sc

2Jy

(
Cm0 +Cmα

α +Cmq

cq
2Va

+Cmδe
δe

)
(62)

θ̇ =q (63)

where ρ is the air density, S is the wing surface area, m is the airframe mass, α is the angle-of-

attack, c is the mean aerodynamic chord of the wing, Sprop is the area of the propeller, km is the

constant that specifies the efficiency of the motor, Jy is an element of the inertia matrix and Va is the

total airspeed with respect to the air mass. The inputs entering the system are the thrust command

δt and the elevator deflection δe. Finally, the non-dimensional coefficients Ci are usually referred

to as stability and control derivatives. Even without any icing or other faults, it is assumed that the

stability and control derivatives are uncertain, i.e. they can be expressed as:

Ci = C̄i +∆Ci

where C̄i is the nominal value, which is assumed to be known, and ∆Ci corresponds to the

uncertainty, which is unknown but bounded by known bounds. In the following, a Zagi Flying

Wing UAV is used as case study, with the parameters listed in Table I [49]. Assuming that the

UAV is equipped with measurement devices such as pitot tubes, GPS and inertial sensors [49] and

estimators [50], all state variables are supposed to be available and hence the output equation reads

as (2).

Table I. System nominal parameters values

Param. Value Param. Value Param. Value

m 1.56kg C̄L0 0.09167 C̄Dq 0

Jy 0.0576kgm2 C̄D0 0.01631 C̄mq −1.3990

S 0.2589m2 C̄m0 −0.02338 C̄Lδe
0.2724

c 0.3302m C̄Lα
3.5016 C̄Dδe

0.3045

Sprop 0.0314m2 C̄Dα
0.2108 C̄mδe

−0.3254

ρ 1.2682kg/m3 C̄mα
−0.5675 Cprop 1.0

km 20 C̄Lq 2.8932
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The wind acceleration acts as an additive disturbance vector W given by:

W =


−cosθ −sinθ

−sinθ cosθ

0 0

0 0


 ω̇x

ω̇z

= H1(θ)ω̇x +H2(θ)ω̇z

where ω̇x and ω̇z are the wind accelerations in the horizontal and vertical directions in the inertial

frame, respectively.

In this paper, we will consider multiplicative actuator faults, described by actuator effectiveness

terms ranging between two extreme values, i.e. 0 (total loss) and 1 (healthy behaviour). These faults

can be represented as an unknown input term F given by:

F =



ρSpropCprop
2m k2

mδ 2
t (ϕt −1)+ ρSV 2

a
2m

(
CLδe

sinα−CDδe
cosα

)
δe(ϕe−1)

−ρSV 2
a

2m

(
CDδe

sinα +CLδe
cosα

)
δe(ϕe−1)

ρV 2
a Sc

2Jy
Cmδe

δe(ϕe−1)

0


where ϕt and ϕe represent the effectiveness of propulsion and elevator, respectively.

5.2. Quasi-LPV model

Using the nonlinear embedding in the parameters approach [51, 52] and taking into account that

Va =
√

u2 +w2 and α = arctan
(w

u

)
, the nonlinear model (60)-(63) can be brought to a quasi-LPV

form [53, 54] as in (1), with x = (u,w,q,θ)T , υ =
(
δ 2

t ,δe
)T , υun =

(
(ϕt −1)δ 2

t ,(ϕe−1)δe, ω̇z
)T ,

k(θ)= (−gsinθ ,gcosθ ,0,0)T and d(θ)= (−ω̇x cosθ ,−ω̇x sinθ ,0,0)T . The matrix functions A(·),

B(·), Bun(·), ∆A(·), ∆B(·), ∆Bun(·) have the following structure (the expressions of the coefficients

appearing in the matrices are reported in the Appendix):

A(·) =


ā11(·) ā12(·) ā13(·) 0

ā21(·) ā22(·) ā23(·) 0

ā31(·) ā32(·) ā33(·) 0

0 0 1 0

 ∆A(·) =


∆a11(·) ∆a12(·) ∆a13(·) 0

∆a21(·) ∆a22(·) ∆a23(·) 0

∆a31(·) ∆a32(·) ∆a33(·) 0

0 0 0 0

 (64)

B(·) =


b11 b̄12(·)

0 b̄22(·)

0 b̄32(·)

0 0

 ∆B(·) =


0 ∆b12(·)

0 ∆b22(·)

0 ∆b32(·)

0 0

 (65)

Bun(·) =


b11 b̄12(·) −sinθ

0 b̄22(·) cosθ

0 b̄32(·) 0

0 0 0

 ∆Bun(·) =


0 ∆b12(·) 0

0 ∆b22(·) 0

0 ∆b32(·) 0

0 0 0

 (66)
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Remark 9: The nonlinear embedding in the parameters approach [51, 52] produces an R2-5
exact quasi-LPV representation of a nonlinear system, which means that no approximation

is involved, and the obtained model represents the system’s behavior (in this case, the UAV’s)

over the whole operating region of the state space. This is in contrast with other methods

which, being based on linearization, produce LPV models that are closer to the LTI ones

obtained under trim conditions, see e.g. [55]. As discussed by [56], conventional approaches

to generate an LPV model based on Jacobian linearizations at trim points fail in representing

the dynamics at non-trim conditions. Conversely, when the nonlinear terms are substituted for

other functions in quasi-LPV form (as in the nonlinear embedding approach), the obtained

model can be applied for both trim and non-trim conditions.

Remark 10: The coefficients reported in the Appendix do not take into account the inaccuracy

about the value of the scheduling variables due to the measurement noise v. It is possible to consider

coefficients that take into account the measurement noise in order to increase the robustness of the

designed interval observer. However, it is worth highlighting the fact that the measurement noise is

typically a high-frequency zero-mean signal, so its effect on the interval observer’s estimation due

to inaccuracies in the scheduling variables is smoothed out by the system’s dynamics, which behave

as a low-pass filter. On the other hand, the parametric uncertainties are constant deviations from the

nominal values, which cause dangerous low-frequency biases in the observer’s estimation. For this

reason, it is of paramount importance to consider them in the interval estimation.

5.3. Icing effects

The accretion of ice on the UAV surfaces modifies the stability and control derivatives according to

the following linear model [57]:

C∗i = (1+ηKi)Ci (67)

where η is the icing severity factor and the coefficient Ki depends on the UAV design and

atmospheric conditions. The clean condition corresponds to η = 0, while the all iced condition

occurs for η = ηmax [7].

As a consequence, the overall icing effect can be modeled as an additive time-dependent

disturbance term E (u,w,q)η , where η is a scalar unknown quantity and the vector E (u,w,q) is

given by:

E (u,w,q) =
(

E1(u,w,q) E2(u,w,q) E3(u,w,q) 0
)T
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with:

E1(u,w,q) =
ρV 2

a S
2m

[(
KL0CL0 +KLα

CLα
α
)

sinα−
(
KD0CD0 +KDα

CDα
α
)

cosα

+
(
KLqCLq sinα−KDqCDq cosα

) cq
2Va

+
(

KLδe
CLδe

sinα−KDδe
CDδe

cosα

)
δe

]
E2(u,w,q) =−

ρV 2
a S

2m

[(
KD0CD0 +KDα

CDα
α
)

sinα +
(
KL0CL0 +KLα

CLα
α
)

cosα

+
(
KDqCDq sinα +KLqCLq cosα

) cq
2Va

+
(

KDδe
CDδe

sinα +KLδe
CLδe

cosα

)
δe

]
E3(u,w,q) =

ρV 2
a Sc

2Jy

(
Km0Cm0 +Kmα

Cmα
α +KmqCmq

cq
2Va

+Kmδe
Cmδe

δe

)

The icing severity factor evolves according to the law:

η = N (ϖ)χ

where N (·) is a nonlinear function, ϖ is the fraction of water freezing at a point on a surface with

respect to the water impinging on the surface, and χ is the accumulation parameter. It has been

observed experimentally that the icing severity factor achieves its maximum ηmax when the freezing

fraction ϖ is close to the value ϖg = 0.2, while it decreases to a steady value as ϖ approaches 1.

It is worth noting that icing may likely also alter the airspeed measurements, as the pitot tube may

be clogged by the ice, usually leading to an over-estimation of the airspeed caused by the increased

pressure. However, in this work, it is assumed that the pitot tube is equipped with heating devices,

which allow a straightforward accommodation of icing effects on sensors.

5.4. Fault/icing diagnosis

Let us notice that, as long as cosθ , 0, the following condition holds:

E (u,w,q) = E (t) ∈ span
[

B1 B2(u,w) H2(θ)
]
∀t ≥ 0

Since the actuator effectiveness ranges between 0 and 1, it is straightforward that (34) is satisfied

with υun =
(
−δ 2

t ,min(0,−δe),−ω̇max
z
)T and υun =

(
0,max(0,−δe), ω̇

max
z
)T , where ω̇max

z is the

maximum value for |ω̇z|. Due to the actuator actions and the wind acceleration being limited in

magnitude, it follows that υun,υun ∈L
nυun

∞ , d ∈L nx
∞ , and it is reasonable that there exists a known

bound V on the noise. Hence, Assumptions 1-2 are satisfied and the robust fault/icing diagnosis

can be achieved using the LPV proportional integral interval unknown observer given by (13)-(14),

(16)-(17) and (41)-(44).
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Then, by recalling the definition of Problem 2, it is possible to choose the matrix S as‡:

S =


1 0 0

0 1 0

0 0 1

0 0 0

 (68)

which, under single fault assumption, leads to the following fault/icing diagnosis algorithm, based

on conditions (37)-(38):

Diagnosis Algorithm.

if


ε(1) ≥ 0 AND ε̄(1) ≥ 0

ε(2) ≥ 0 AND ε̄(2) ≥ 0

ε(3) ≥ 0 AND ε̄(3) ≥ 0

then ‘‘no faults/no icing’’

if


ε(1) < 0 OR ε̄(1) < 0

ε(2) ≥ 0 AND ε̄(2) ≥ 0

ε(3) ≥ 0 AND ε̄(3) ≥ 0

then ‘‘fault in thrust’’

if


ε(1) ≥ 0 AND ε̄(1) ≥ 0

ε(2) < 0 OR ε̄(2) < 0

ε(3) ≥ 0 AND ε̄(3) ≥ 0

then ‘‘fault in elevator’’

else ‘‘icing’’

In other words, as long as all the signals ε(i), ε̄(i) are nonnegative, the behavior of the UAV is

compatible with the considered sources of uncertainty. When either ε(1) or ε̄(1) (ε(2) or ε̄(2)) is the

only signal to become negative, a fault in thrust (in elevator) can be indicated. On the other hand, if

multiple signals become negative, then the diagnoser indicates that icing has occurred.

By imposing condition (36), and taking into account the structure of Bun(ϑ) in (66), it is possible

to calculate the matrix R(ϑ), as follows:

R(ϑ) =


1
/

b11 tanθ
/

b11 r13(ϑ) 0

0 0 1
/

b̄32(ϑ) 0

0 1
/

cosθ r33(ϑ) 0

0 0 0 r44(ϑ)

 (69)

with:

r13(ϑ) =− 1
b̄32(ϑ)

[
b̄12(ϑ)

b11
+

sinθ

cosθ

b̄22(ϑ)

b11

]
r33(ϑ) =− b̄22(ϑ)

b̄32(ϑ)cosθ

‡Infinite choices of S are possible, but they would lead to more complicated diagnosis algorithms.
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and an arbitrary r44(ϑ) , 0 (in the following, it is chosen as r44(ϑ) = 1).

Then, the lower and upper bounds for dR(θ) = R(ϑ)d(θ) =

(−ω̇x (cosθ + sinθ tanθ)/b11,0,−ω̇x tanθ ,0)T can be calculated as dR(θ) = −dR(θ) =

(|cosθ + sinθ tanθ | ω̇max
x ,0, |tanθ | ω̇max

x ,0)T , where ω̇max
x is the maximum value for |ω̇x|.

Remark 11: It is worth stating that the matrix R(ϑ) given by (69) depends on the state variables

u and w through the angle-of-attack α . Consequently, the matrix function Ṙ will depend on u̇ and

ẇ, which are not measured, in contrast with the assumption made in Section 4 that ϑ̇ is known.

However, since it has been noticed that the elements depending on u̇ and ẇ are small in size, Ṙ can

be approximated successfully by a matrix ˜̇R, obtained from R(ϑ) assuming a constant α , which

depends only on measured variables, such that the proposed technique can still be applied despite

not measuring ϑ̇ .

6. SIMULATION RESULTS

The simulation results shown in this section have been obtained assuming that each parameter Ci is

affected by a symmetric uncertainty ∆Ci with bounds corresponding to 0.4% of the nominal value C̄i.

Dryden-like wind disturbances [58], with ω̇x, ω̇z ∈ [−0.1 m/s2,0.1 m/s2] have been used to simulate

the components of the wind gusts. It is assumed that the noise affecting the sensor measurements

is uniformly distributed within the intervals vu ∈ [−1m/s,1m/s], vw ∈ [−1m/s,1m/s], vq ∈

[−0.03rad/s,0.03rad/s] and vθ ∈ [−0.3rad,0.3rad], where vx denotes the measurement noise

for the state variable x. However, the raw measurements coming from the sensors have been filtered

using low-pass filters with time constant τ = 0.23s, and the filtered signals have been used as y in

(2), such that V = [0.25,0.25,0.01,0.01]T .

In order to calculate the matrices appearing in (13)-(14), (16)-(17) and (41)-(44), let us notice that

an optimal choice of the diagonal matrix functions Γ(ϑ), Γ(ϑ) can be performed by maximizing

the icing to wind/noise ratios (IWNRs) [24] for each residual. This choice enhances the residuals’

ability to reject the wind acceleration disturbance and the noise, and increases their sensitivity to the

icing. Also, due to the structure of the matrix S in (68), the matrix functions S∗(ϑ), S∗(ϑ) should

be such that F(ϑ), F(ϑ) are upper triangular, with the upper left diagonal block corresponding to

Γ(ϑ) and Γ(ϑ), respectively. For the sake of simplicity, S∗(ϑ) and S∗(ϑ) can be chosen in such a

way that diagonal matrix functions F(ϑ) and F(ϑ) are obtained. In this case, it is easy to ensure

that the matrix functions F(ϑ) and F(ϑ) are Metzler.

The set of conditions given by (45) has been verified using 256 gridding points, which correspond

to the partition of each interval of variation of the state variables (u ∈ [16,21], w ∈ [0.5,2.5],

q ∈ [−0.003,0.003], θ ∈ [−0.1,0.3]) in 4 sub-intervals.
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For simulation purposes, the UAV is controlled by an autopilot [59], responsible of tracking some

desired time-varying reference profiles for the horizontal velocity u and the pitch angle θ (the R2-2
calculated control inputs are illustrated in Fig. 2). Four different scenarios have been considered,

as follows:

Scenario 1

In this scenario, no faults/icing occur. Throughout the simulation, the filtered measurements are

always inside the estimated bounds, as shown in Fig. 3. As a consequence, the residuals obtained in

this scenario are all positive (see Fig. 4), which means that the diagnosis algorithm given in Section

5 provides a no fault/no icing indication.

Scenario 2

The propulsion is subject to a linearly incipient loss of efficiency which starts at time t = 200s

and equals ϕt(t) = 0.5 starting from time t = 210s. Fig. 5 shows that due to the fault occurrence, the

filtered measurements exits from the estimated bounds, such that at time t = 202.7s, ε(1) becomes

negative (see Fig. 6), and since all the other residuals remain positive, a correct indication of fault

in thrust is provided by the diagnosis algorithm.

Scenario 3

The elevator is subject to a linearly incipient loss of efficiency which starts at time t = 200s

and equals ϕe(t) = 0.9 starting from time t = 210s. Fig. 7 shows that after the fault occurrence,

the filtered measurements of both u(t) and q(t) exit the estimated bounds. However, due to the

decoupling property of the residuals, only ε
(2) becomes negative (see Fig. 8), which allows the

diagnosis algorithm to provide a correct indication of fault in elevator at time t = 204.62s.

Scenario 4

The UAV is subject to icing, i.e. the stability and control derivatives are modified according to

(67), taking into account the coefficients Ki listed in Table II§. The icing starts at time t = 200s and

slowly increases η from 0 to 0.2, such that η = 0.2 starting from time t = 400s. Fig. 9 shows that this

scenario affects all the interval estimations of the states, except the ones corresponding to the pitch

angle θ(t). On the other hand, the residuals plotted in Fig. 10 show that an abnormal situation is

detected at time t = 275.06s (ε(3) becomes negative) and the icing occurrence is correctly isolated

at time t = 285.04s (ε(2) becomes negative). Further confirmation about the icing occurrence is

provided by the residual ε(1), which becomes negative at time t = 322.36s.

§The coefficients Ki used in this work have been computed mimicking the proportional variation of the stability and

control derivatives for a Twin Otter aircraft subject to all iced condition [57], and they could differ in the case of a real

Zagi Flying Wing UAV. However, since the proposed LPV interval unknown input observer does not depend on the values

of these coefficients, it can be expected that similar results would be obtained with different values of the coefficients Ki.
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Figure 2. Control inputs δt(t) and δe(t) in scenarios 1-4.
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Figure 3. Filtered measurements and estimated bounds in scenario 1 (no fault/icing).
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Figure 4. Residuals in scenario 1 (no fault/icing).
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Figure 5. Filtered measurements and estimated bounds in scenario 2 (fault in thrust).
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Figure 6. Residuals in scenario 2 (fault in thrust).
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Figure 7. Filtered measurements and estimated bounds in scenario 3 (fault in elevator).
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Figure 8. Residuals in scenario 3 (fault in elevator).
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Figure 9. Filtered measurements and estimated bounds in scenario 4 (icing).
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Figure 10. Residuals in scenario 4 (icing).

Table II. Coefficients Ki for an all iced configuration

Coeff. Value Coeff. Value Coeff. Value

KL0 0 KLα
−0.5000 KLq −0.0675

KLδe
−0.4770 KD0 2.5610 KDα

0

KDq 0 KDδe
0 Km0 0

Kmα
−0.4960 Kmq −0.1755 Kmδe

−0.5000

Remark 12: The main drawback of applying an interval strategy for dealing with uncertainties,

noise and disturbances, is the inherent conservativeness due to the fact that the estimated bounds for

the state will take into account the worst-case scenario. It has been observed through simulations that

the theoretical assumptions under which the method has been developed can be relaxed in order to

deal with larger values of uncertainties, noise and disturbances, although in this case no theoretical

guarantees of false alarms avoidance can be provided.

7. CONCLUSIONS

This paper has proposed an LPV proportional integral interval UIO for the robust fault/icing

detection in UAVs described by an uncertain model. The proposed technique has several advantages.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2018)

Prepared using rncauth.cls DOI: 10.1002/rnc



30

First, it can take into account operating point variations in an elegant way using the LPV paradigm.

Second, the presence of the integral term avoids the appearance of the noise derivative term in the

estimation error equation, thus increasing the noise rejection properties. Third, due to the property

of interval estimation guaranteed by the observer, as long as the assumptions about disturbances,

noise and uncertainties hold, the absence of false alarms will be assured.

The conditions for the analysis and design of these observers are based on LMIs, which can

be solved efficiently using available solvers. In particular, two properties are required by the

analysis/design: i) interval estimation of the state, i.e., as long as some assumptions about bounds

on uncertainties, disturbances and noise are verified, the state will always be contained within the

bounds calculated by the interval observer; and ii) boundedness of the estimation, which is akin

to the asymptotic stability of classical state observers, and is verified by finding an appropriate

Lyapunov function.

Simulation results, obtained with the uncertain model of a Zagi Flying Wing UAV, have shown

the effectiveness of the decision algorithm, which identifies correctly unexpected changes in the

system dynamics due to actuator faults or icing. Four scenarios have given more insight into the

proposed method and have confirmed the results provided by the theory.

Future research will be aimed at decreasing the conservativeness of the proposed method, both

by using alternative analysis/design approaches based on less conservative Lyapunov functions (e.g.

parameter-dependent ones) and by relaxing the assumptions on disturbances and noise. Another

line of research will investigate the active choice of the reference trajectory in order to enhance the

diagnosis performance of the proposed method. It is worth recalling that a theoretical challenge to

be considered in the future lies in extending the proposed method to the more general case in which

the output matrix depends on the varying parameters. Finally, the experimental validation of the

proposed methodology will be pursued.
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APPENDIX
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ā12(·) =

ρwS
2m

[(
C̄L0 +C̄Lα

α
)

sinα−
(
C̄D0 +C̄Dα

α
)

cosα−
SpropCprop

S

]
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ā21(·) =−

ρuS
2m

[(
C̄D0 +C̄Dα

α
)

sinα +
(
C̄L0 +C̄Lα

α
)

cosα
]
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ā31(·) =

ρScu
2Jy

(
C̄m0 +C̄mα

α
)
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