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Abstract: This paper presents a physics-based unified modelling framework for wave-propelled
uncrewed surface vehicles (USVs), combining manoeuvring, seakeeping, and wave-propulsion
models into a cohesive architecture. The model is intended for a range of wave-propelled USVs,
and is provided with closed-form expressions. A case study on a 5-meter AutoNaut vehicle
demonstrates the model’s ability to reproduce realistic propulsion behaviour, and supports
design of guidance and decision support systems for long-endurance ocean navigation.
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1. INTRODUCTION

Wave energy offers an advantage over traditional sails
for green propulsion due to its typically lower variability,
as waves propagate more uniformly across oceans from
distant sources. There are new and exciting applications,
e.g., for long-endurance remote oceanographic monitoring
without human intervention, see, e.g., (Bøckmann, 2015).

The primary method employed in wave-propelled vehicles
involves the use of lift-generating foils. The foils are typ-
ically mounted on struts attached to the hull, and the
relative motion between the foil and the water is trans-
ferred into propulsive thrust. This will in principle allow
the vehicle to operate with an unrestricted endurance, if
not for factors such as maintenance, strong ocean currents
and limited energy storage/harvesting for electric systems.

A challenge for autonomous operations using wave propul-
sion, e.g. on uncrewed surface vehicles (USVs), is that the
forward speed relies on the environmental sea state and
is not actively controlled. The controller running on the
vehicle needs to perform well in various environmental
conditions. Often, such path-controllers are based on a
3-degree-of-freedom (DOF) manoeuvring model which is
unsuited as a stand-alone model to include predictions for
the propelled thrust. In (Dallolio et al., 2022b) a course
controller was designed and tested for the AutoNaut ve-
hicle and they concluded that “a speed model is key and
would provide useful knowledge used for mission planning
and course control”. As shown in (Dallolio et al., 2022a),
such speed models can be effectively used to improve
control performance through gain scheduling.

Accurate hydrodynamic models for such vehicles are hard
to derive analytically due to the coupled viscous interac-
tion of the foils and the hull. Øveraas et al. (2022) utilized
data-driven methods for predicting the speed using met-
ocean forecasting, but one is left reliant on forecasting
to predict the motion. Recent development by Mounet
et al. (2024) provided a novel method for estimation of
the seakeeping motion of USVs based on explicit closed-
form expressions with experimental validation.
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Unlike data-driven methods and motivated by literature,
(1) we generalize a physics-based speed model for wave-
propelled USVs with real-time applicability by extending
the unified time-domain model given by Fossen (2005),
(2) presents new contributions for modelling forces on the
foils in previously non-modelled operating conditions, and
(3) demonstrate usability in a case-study with previously
studied manoeuvring models, recent seakeeping models
and the refinements in foil modelling from this paper.

2. UNIFIED MODEL STRUCTURE

We propose a model for wave-propelled USVs by the
superposition and interaction of three subsystems given in
Fig. 1. The 6-DOF rigid body motion of the USV, which
also needs to incorporate the presence of the foils, can
be decomposed into a manoeuvring model Σ1 depending
on a parameter vector α1 for surge, sway and yaw and
a seakeeping model Σ2 depending on α2 for heave, roll
and pitch. This is the classical unified model as described
by Fossen (2005). The architecture is supplemented by a
cohesive propulsion subsystem Σ3 (with α3) to include the
additional DOFs for modelling propulsive forces and foils.

3. MANOEUVRING MODEL

The 3-DOF dynamical model for the horizontal-plane
motion is well-known and a complete derivation is found in
(Fossen, 2021). The position (xn, yn) and cardinal heading
ψ of the USV in North-East-Down (NED) reference frame
is denoted by η = [xn, yn, ψ]⊤. The subsystem Σ1 is

η̇ = R(ψ)ν, (1a)

Mν̇r +C(νr)νr +B(νr)νr = τ env + τRB. (1b)

Here, the velocity vector ν = νr + νc = [u, v, r]⊤ is
the body frame velocity in surge, sway and yaw, where
νc = [uc, vc, 0]

⊤ is the sea current velocity assumed to be
irrotational and slowly varying, and νr = [ur, vr, r]

⊤ is the
relative velocity through the water. The matrices are the
mass matrix M = MRB +MA ≻ 0, which includes inertia
of the rigid body (assumed constant) and added mass, the
Coriolis and centripetal matrix C = CRB + CA = −C⊤,
which includes rigid body and hydrodynamic components,
and the damping matrix B ensures dissipative motion
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Fig. 1. Time-domain model architecture with superposition of a manoeuvring model Σ1, seakeeping model Σ2 and the
extended propulsion model Σ3 of the foils driven by the relative motion of the USV and water. Wave propulsion
forces are fed back to the manoeuvring model. Architecture inspired by Fossen (2005).

through the water. Wind and mean second-order wave
forces are included in the generalized environmental forces,
τ env = τwind + τwave2. Lastly, the rigid body forces τRB
comprises the steering and propulsion forces from rudder,
τ rudd, which is actively controlled, an optional propeller
for safety interventions (not included in the analysis), and
the wave-propulsion forces by the foils τ foil. The rotation
matrix R(ψ) rotates coordinates from the NED frame to
the manoeuvring frame for Σ1 in which velocities are given.

3.1 Parameters in the manoeuvring model

The matrices in the manoeuvring model depend on the
specific USV, which e.g., can be modelled as a 3-DOF
surge-decoupled representation, see (Fossen, 2021). The
following parameters may describe subsystem Σ1:

α1 =
(
m,Jz, xg, parameters in manoeuvring matrices, etc.

)
Here, m is the vehicle mass, Jz is the moment of inertia in
yaw and xg is the longitudinal position of centre of gravity.

The parameters in α1–α3 for subsystems Σ1–Σ3 should be
adjusted according to the accuracy of model, and validation
of these parameters is outside the scope of the paper.

•Wind : For rapid estimation of wind forces, see e.g., (Brix,
1993). Low-order models has been given by Fossen (2021).

• Rudder : For rudder forces, see e.g., Kijima et al. (1990).

4. SEAKEEPING MODEL

We use the method inspired by Jensen et al. (2004) and
Mounet et al. (2024) in order to predict motion in heave,
roll and pitch for wave-propelled vehicles. The model uses

semi-empirical force transfer functions (FTFs) derived
from a monohull geometry by length L̃, breadth B̃ and
draft T̃ , see Fig. 2b. It is expected that these dimensions
are equal or greater than the vehicle’s actual ones to
incorporate added viscous damping from the foils. Note
that the seakeeping motion is found by the combination
of motion output of Σ1 and Σ2 (by extending to full state
vectors with zeros for non-modeled states). We model the
wave-induced motions Σ2 (with abuse of notation) by

Mrao(ω)ξ̈ +Brao(ω)ξ̇ +Craoξ = τwave1. (2)

Here, the heave, roll and pitch is ξ = [zn, ϕ, θ]⊤, the wave
frequency ω, and the motion is driven by the first-order
wave forces τwave1, defined by forcing functions later. We
need to introduce the approximate state-space version of
Eq. (2) suitable for numerical implementation (based on
the time-domain representation; see Ogilvie (1964))

Mrao(∞)ξ̈ +Brao(∞)ξ̇ + µr +Craoξ = τwave1, (3a)

ẋr = Arxr +Brξ̇, (3b)

µr = Crxr, (3c)

where the fluid memory effects is given by the vector
µr driven by the velocity ξ̇, see Kristiansen and Egeland
(2003). A strength in the analysis is that we show that the
inertia matrix Mrao, damping matrix Brao and restoring
matrix Crao can be modelled as diagonal matrices.

For a range of wave-propelled USVs, the roll motion may
be neglected such that only the pitch and heave motion is
the main driver of the wave-propulsion system Σ2. When a
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Fig. 2. Simplified monohull geometries for modelling wave-
induced motions in subsystem Σ2.

5-DOF seakeeping motion is used to model wave-propelled
USVs, the parameter for subsystem Σ2 reduces to only

α2 =
(
L̃, B̃, T̃

)
.

4.1 Wave encounter frequency

We denote the wave encounter angle β = βk − ψ for
waves propagating in cardinal direction βk such that 0◦

corresponds to following waves, 90◦ to beam waves and
180◦ to head waves, see Fig. 3. The encounter frequency
ωe differs from the intrinsic wave frequency ω due to the
vehicle’s speed and heading, and is the proper frequency
used in the FTF in Eq. (2) and the following subsections.

From the manoeuvring speed U =
√
u2 + v2 and the deep

water dispersion relation, ω2 = gk, k being the wave
number and g the gravitational constant, the Doppler
shifted encounter frequency is (where η := ωe/ω)

ωe =
∣∣ω − (ω2/g)U cos(β)

∣∣ = η ω. (4)

4.2 Pitch and heave motion

The closed-form expressions for the longitudinal wave-
induced motions are based on strip-theory, which is ac-
curate when the Froude number given by Fn = U/

√
gL,

is less than 0.3, see (Jensen, 2001). This assumption will
generally be the case when the vehicle in consideration is
slender and/or the speed U is low, which is the common
case for most wave-propelled USVs.

Ignoring the frequency-dependency in the added mass,
the seakeeping analysis as stated in (Fossen, 2021) for
decoupled motions in heave zn and pitch θ can be written
as a forced mass-damper-spring system on the form

M33z̈
n +B33(ω, ωe)ż

n + C33z
n = Z0 ζa cos(ωet), (5)

M55θ̈ +B55(ω, ωe)θ̇ + C55θ =M0 ζa sin(ωet), (6)
where Z0 is the forcing function from wave elevation ζa
to heave and M0 is the corresponding forcing function
in pitch. We observe that the coupled motion in heave
and pitch has 90◦ phase difference (Z0 and M0 real). In
(Jensen et al., 2004) a constant sectional added mass equal
to the displaced water was assumed. From strip-theory, the
longitudinal motions for box-shaped vessels are

2
kT̃

ω2
ξ̈ +

R2

kB̃η3ω
ξ̇ + ξ = F0 ζa cos(ωet+ ϵ). (7)

Here, ξ is placeholder for heave or pitch, F0 is the forcing
function (Z0 orM0), ϵ is the phase angle (0

◦ for heave and
90◦ for pitch) and R is the dimensionless ratio between
incoming and the diffracted wave amplitudes, given by

R = 2 sin(0.5kB̃η2) exp(−kT̃ η2). (8)

Note that the coupled phase of the longitudinal motions is
enforced since Eq. (7) has the same left hand side. Hence
the relative damping ratio ζ3 = ζ5 and natural frequency
ωn3 = ωn5 is equal. This enforces a loose coupling.

The dynamical model from Jensen et al. (2004) can be
rewritten according to the seakeeping notation in (Fossen,
2021) by restructuring Eq. (7). For a box-shaped vehicle,
Fig. 2b, the modelled terms in heave and pitch were found:

• Heave entries: Inertia M33 = 2∇̃ρ, damping

B33 = L̃
ρg

kωe

R2

η2
, and restoring term C33 = ρgL̃B̃.

• Pitch entries: Inertia M55 = 2ρ∇̃T̃ G̃ML, damping

B55 = L̃T̃ G̃ML
ρg

kωe

R2

η2
, and restoring term C55 = ρg∇̃G̃ML.

Here, the volume of displaced water is ∇̃ = L̃B̃T̃ and the
longitudinal metacentric height is G̃ML = 1

12 L̃
2/T̃ .

Inspired by Fossen (2021), we re-write the forcing functions
Z0 and M0 in Jensen et al. (2004) according to

Z0 = C33 sinc(σ)κf, (9)

M0 = C55
6
L̃σ

[sinc(σ)− cos(σ)]κf, (10)

where σ := 1
2keL̃ and ke = k| cos(β)| is the effective wave

number, κ = exp(−keT̃ ) is the Smith’s correction factor,
the function sinc(x) = sin(x)/x and

f =

√
(1− kT̃ )2 +

(
R2/(kB̃η3)

)2

.

4.3 Roll motion

The roll motion ϕ can be described by

M44ϕ̈+B44ϕ̇+ C44ϕ = K0 ζa cos(ωet+ ϵϕ), (11)

where K0 is the forcing function from waves and ϵϕ is the
phase angle. The moment of inertia isM44 = (T4/2π)

2
C44

related to roll time period T4 and the restoring coefficient
C44 = ρg∇̃G̃MT. The natural period in roll can as a first
guess be approximated by T4 ≃ 2B̃CgeoG̃M

−1/2

T according
to the International Maritime Organization (1991) resolu-
tion A.685(17). An estimation of the geometric constant

Cgeo based on A.562(14) is Cgeo ≃ 0.373 + 0.023B̃/T̃ .

An alternative to the above is to use the method by
Jensen et al. (2004) to predict the physics of the roll
motion by using a simplified monohull geometry shown in
Fig. 2c. This provides alternative geometrical formulations
with explicit, however longer expressions. Details of this
method is presented in Mounet et al. (2024). A better
approximation for the roll dynamics can be found in
(Matsui et al., 2023). In (Fossen, 2021) the damping is
directly estimated from the relative damping ratio ζ4 by

B44 = 2ζ4 (T4/2π)C44,

where the exciting moment due to regular waves is

K0 =
√

(ρg2/ωe)B44 sin(β). (12)

4.4 Fluid memory effects in pitch and heave

In the following, closed-form approximation for fluid mem-
ory effects in heave and pitch are derived. The entries for
roll is zero since this motion was modelled independent of
frequency, i.e., matrices Ar44, Br44 and Cr44 are zero.

By analysing Eq. (8) we introduce the dimensionless fre-
quency ω′ = ω(B̃/2g)1/2 in order to express the sectional
damping b(ω′) = B33/L̃, on ω

′ and transversal aspect ratio

ΛT := B̃/T̃ . From Perez and Fossen (2008), we choose
the simplest rational transfer function candidate for the
retardation function K(s), or similarly the state-space of
the fluid memory effects in Eqs. (3b)–(3c). The function is
second order, input-output stable, has zero at s = 0 and
we base the analysis on s′ = jω′. The fluid memory effects
for heave and pitch motions of the box-shaped vessel were
first found from Eq. (7) with s′ and transferred back;

K̂(s) =
µr

ξ̇
(s) =

2ρB̃g
√

2g/B̃·q′0·Cmotion s

s2 +
√

2g/B̃·p′
1 s + (2g/B̃)·p′

0

, (13)
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Fig. 3. Definition of wave encounter angle, β = βk − ψ.

where the motion constant is different for pitch and heave,

Cmotion = {L̃; for heave, L̃T̃ G̃ML; for pitch}.
The parameters q′0, p

′
0 and p′1 in Eq. (13) depend on the

geometry, and were found by a least-square fit from K
found from Ogilvie’s transformation of Eq. (7) where we
used b(ω) = ρg2R(ω)2/ω3. They are reported as (ΛT>1):

q′0(ΛT) ≃ 0.5696 · ΛT − 0.018
ΛT + 1.035 , (14a)

p′0(ΛT) ≃ 0.5917 · ΛT − 0.245
ΛT + 0.612 , (14b)

p′1(ΛT) ≃ 0.7376 · ΛT + 0.394
ΛT + 0.642 . (14c)

A realization of the fluid memory effects in Eq. (13) is

Ar,33 = Ar,55 =

[
−
√

2g/B p′1(ΛT) −(2g/B) p′0(ΛT)
1 0

]
,

Br,33 = Br,55 = [1, 0]
⊤
,

and Cr,33 = Cr,55 =
[
2ρg

√
2Bg Cmotion q′0(ΛT), 0

]
.

• First order wave force transfer functions: Denoting
τ 0(ωe) = [Z0(ωe),K0(ωe)s,M0(ωe)]

⊤ as the frequency-
dependent forcing function (+90◦ phase in K0), first order
wave forces from wave amplitude ζa,i and phase ϵi are:

τwave1 :=

∞∑
i=1

τ 0(ωe,i)ζa,i cos(ωe,it+ ϵi) (15)

5. FOIL PROPULSION MODEL

The following sections show that foil dynamics are de-
scribed by a mass-damper-spring model in subsystem Σ3;

Mϑϑ̈n +Bϑ(ϑ̇n)ϑ̇n +Cϑ(ϑ)ϑn = · · · (16a)

Cϑ(ϑ)IN×1θ +QA +QN +Qinertia(ẍ
n
p , z̈

n
p),

ẋt =At(Ur)xt +BtQN,stationary, (16b)

QN =Ct(Ur)xt +DtQN,stationary, (16c)

where the vector ϑn = [ϑn,1, ..., ϑn,m]⊤ contains all m
foil angles relative to NED such that ϑi is the foil angle
relative to the body frame and ϑn,i = θ + ϑi. The foil
angle ϑ is measured relative to the USV body with positive
direction following yb-axis. The matrices Mϑ, Bϑ and
Cϑ represents mass-damper-spring terms for the foils (on
the diagonal entries) modelled as low-frequency motion,
see Sect. 5.8. The moment vectors contain the respective
added mass moments QA = [QA,1, ..., QA,m]⊤ and likewise
for transient lift and drag moments QN filtered by “fluid-
memory-like” matrices At–Dt of the correct stationary
moment QN,stationary. We denote relative velocities of
the pivot points by Ur = [Ur,1, ..., Ur,m]⊤. For inertial
correctionQinertia, their accelerations ẍ

n
p and z̈np is needed.

The parameters in subsystem Σ3 may include the foil
span S, the mean chord length cm, foil force characteristics

described by αs, CLs, CDs and ∆s (defined later) and
positions of the pivot point xp and centre of mass xc.g.
along the chord length (parameters for each foil needed):

α3 =
(
S, cm, αs, CLs, CDs,∆s, xp, xc.g., etc.

)
5.1 Uncorrected analytical quasi-steady lift and drag forces

A foil in stationary flow Ur will experience lift L, drag D
force according to Fig. 4. The suction force and viscous
drag is neglected in this study, thus we can write the
normal force magnitude as N =

√
L2 +D2. From linear

foil theory, the analytical quasi-steady forces on the foils,
whose magnitude is valid for small angles and qualitatively
correct for larger angles, are (per length; see Tufte (2024))

L′(α) = (1/2)ρU2
r c π sin(2α), (17a)

D′(α) = (1/2)ρU2
r c 2π sin(α)

2. (17b)

Here, the relative water velocity is Ur, foil chord length c
and attack angle is α, where α = 0◦ is head on. For relative
velocities Ub

r = [ur, vr, wr]
⊤, then α = arctan(wr, ur) + ϑ.

5.2 Centre of pressure at non-modelled operating points

For small attack angles, the centre of pressure appears at
the quarter-chord position from leading edge, which can be
found analytically. It is more or less valid up to the stall
angle. However, at larger angles the flow detaches and the
centre of pressure depends on the attack angle. We use a
piecewise continuous approximation

xc.p.(α) =


1/4, |α| ≤ 0.05π,

1/5 + 1/π · |α|, 0.05π < |α| ≤ 0.20π,

1/3 + 1/3π · |α|, 0.20π < |α| ≤ 0.80π,

−1/5 + 1/π · |α|, 0.80π < |α| ≤ 0.95π,

3/4, 0.95π < |α|

(18)

from experimental and numerical investigation for flat
plates in uniform inflow stream by Mirzaeisefat (2011).

5.3 Correcting for three-dimensional effects

To correct for three-dimensional effects, a correction coef-
ficient C3D(Λ) is added based on aspect ratio Λ = S/cm.
A blend from literature, e.g., Prandtl’s lifting line theory,
aerospace or rudders, correct for Λ → ∞ is proposed:

C3D(Λ) = Λ
Λ + 2.25 . (19)

5.4 Correcting for stall

The effect of stall introduces a sudden reduction in lift and
increase in drag beyond the stall angle αs. This is due to
unattached flow, and is of importance for modelling foils in
wave-propelled vehicles due to low speeds and large attack
angles. By multiplying the lift and drag forces by non-
dimensional coefficients CLn(α) and CDn(α), this effect is
incorporated. We propose a simplified model for the stall
effect with a sigmoid blending function σs(α, αs) ∈ [0, 1],
mid-point given by the second argument. The model is

CLn(α) = 1− CLsσs(|α|, αs) + CLsσs(|α|, π − αs), (20)

CDn(α) = CDs

[
1 + CLsσs(|α|, αs)− CLsσs(|α|, π − αs)

]
. (21)

For practical considerations, fluttering phenomena can be
reduced in the model by widening the blending function σs,
which correspond to increasing ∆s if one uses

σs(x, x0; ∆s) = 1/(1 + exp(−10(x− x0)/∆s)),

where ∆s is the interval for 0.01–0.99 rise.

5.5 Transient lift and drag forces

The work of Theodorsen (1949) showed analytically that
lift and drag forces on thin foils are frequency-dependent
based on the reduced frequency kf := 0.5 cm · (ωf/Ur)
where ωf is the frequency of oscillation of the foil.



ϑn

−α

L

USV motion above

Ur

xc.p.(α)xp

D

Fig. 4. Lift L and drag D forces on a foil in steady relative
flow Ur at an attack angle α. Modelled by angle ϑn.

Theodorsen introduced the complex factor CTh(kf ) for
adding a phase and attenuation to the lift and drag forces.
The coefficient however involves complex calculations with
Hankel functions and is therefore unsuited for simulation
purposes. A second-order transfer function with reasonable
agreement for the entire frequency range is proposed:

ĈTh(s
′) =

0.5 s′2 + 0.549 s′ + 0.095

s′2 + 0.848 s′ + 0.095
(22)

with s′ = jkf . Notice that the Laplace variable is based
on the reduced frequency, s′ = jkf . When applying the
above, one needs to substitute the variable s = (2Ur/cm)s′

to obtain a velocity-dependent model of non-stationary
forces. This results in the linear-time-variant state-space
approximation based on the inflow velocity.

The corrected, non-stationary lift and drag forces are

L = ĈTh(s)L
′(α)C3D(Λ)CLn(α) · S, (23a)

D = ĈTh(s)D
′(α)C3D(Λ)CLn(α) · S. (23b)

The sub-matrices for the state-space approximation of the
transient in Eqs. (16b)–(16c) for foil i is (s = (2Ur/cm)s′):

At,ii =
[
−1.696Ur,i/cm,i −0.380 (Ur,i/cm,i)

2

1 0

]
, Bt,ii =

[
1
0

]
,

Ct,ii = [0.250Ur,i/cm,i, 0.190 (Ur,i/cm,i)
2], and Dt,ii = 0.5.

5.6 Added mass forces and moments

The added mass force (per unit span) is modelled by the
normal component of the expression for infinite thin plates

A′ = (1/4)ρπc2U̇r sin(αacc), (24)

where U̇r is the relative inflow acceleration, attack angle
αacc = arctan(ẇr, u̇r) + ϑ and assumed to act through the
centre (Meyerhoff, 1970). To correct for three-dimensional
effects, we suggest to use the following formula (Λ > 1)

Ca(Λ) =
Λ − 0.260
Λ + 0.290 , (25)

to match the analytical results by Meyerhoff (1970). The
corrected added-mass force is thus A = A′Ca(Λ) · S. The
added moment of inertia along the half-chord point is

Q′
ϑ̈
= J ′

a = (1/128)ρπc4m, (26)

according to Lamb (1916), which should be slightly higher
for rotation about the pivot point, Qϑ̈ = Ja ≥ Q′

ϑ̈
· S.

5.7 Passive spring moments for optimal wave-propulsion

The restoring moment of the foils by passive springs en-
sures that the USV and foils interact in an optimal manner
for wave propulsion. The spring moment is modelled with
−Qϑ(ϑ)ϑ, e.g., linear if torsion springs are employed.

5.8 Individual foil dynamical model and propulsion forces

Assuming that the foils are driven by pitch and heave
motion of the USV, with no roll coupling for slowly heading
rate, we found the rotational dynamics around the pivot
point xp (distances from nominal leading edge, see Fig. 4):

Jpϑ̈n =−Qϑ̈ϑ̈r (rotational inertia)

−Qϑ̇(ϑ̇r)ϑ̇r (rotational damping)

−Qϑ(ϑ)ϑ (spring moment)

+N · (xc.p.(α)− xp) (lift and drag forces)

+A · (0.5cm − xp) (added mass force)

+Dv sin(α) · (0.5cm − xp) (viscous damping)

+B cos(ϑn) · (xc.b. − xp) (buoyancy)

−G cos(ϑn) · (xc.g. − xp), (gravity)

− Z̈p cos(ϑn) · (xc.g. − xp) (inertia correction)

− Ẍp sin(ϑn) · (xc.g. − xp) (inertia correction)

Here, ϑ is the foil angle relative to the vehicle, hence
ϑn = θ+ϑ is relative to NED, and ϑ̇r is the relative rotation
velocity which was set equal to ϑ̇n. The moment of inertia
of the foil around the pivot point is Jp, centre of buoyancy
is xc.b. and centre of gravity is xc.g.. We denote Z̈p and Ẍp

as the combined acceleration times foil mass in zn- and xn-
direction of the pivot point, which can be found through
kinematics of the USV seakeeping motion.

• Single uncoupled foil dynamics: Assuming that the con-
tribution from gravity and buoyancy cancels, and incorpo-
rating viscous damping into damping moment for tuning
considerations (damping relies on the specific foil), the
dynamics is re-written as a mass-damper-spring system:

Mϑϑ̈n +Bϑϑ̇n +Cϑϑn = Cϑθ+QN +QA +Qinertia (27)

Here, Mϑ = Jp + Qϑ̈, Bϑ = Qϑ̇(ϑ̇n), Cϑ = Qϑ(ϑ), the
transient lift and drag forces QN = N · (xc.p.(α)− xp) by
filtering QN,stationary, added mass QA = A · (0.5cm − xp)
and inertia moment Qinertia as defined above.

• Wave-propulsion: Finally, the propulsive forces are

τ foil =

[
Xfoil
Yfoil
Nfoil

]
:=

m∑
i=1

[
(Ni +Ai)(1− tF,i) sin(ϑn,i)

0
0

]
, (28)

which follows from the induced lift, drag and added mass
forces on the foil surface, ignoring roll; else Yfoil, Nfoil ̸= 0.
We add tF ≃ 0.05–0.5 as a resistance coefficient similar to
the convention used in rudder theory, to be tuned.

6. CASE STUDY: AUTONAUT

We employ the proposed system architecture on a 5.0 m
length version of the AutoNaut vehicle from Norwegian
University of Science and Technology (NTNU). The ve-
hicle consists of one simple foil at the fore and a port-
starboard decoupled foil at the aft. The main particu-
lars for the vehicle is listed in Tab. 1 (Tufte, 2024). The
manoeuvring terms, wind and steering parameters of this
particular vehicle was found by Dallolio et al. (2022b).

Table 1. Main particulars NTNU AutoNaut.

Main particulars Unit
Length, L (Lpp) 5.0 (4.6) [m]
Breadth, B 0.8 [m]
Draft, T (w/foils) 0.3 (0.8) [m]
Foil span, S 1.3 [m]
Mean chord length, cm 0.192 [m]

• Seakeeping model : Mounet et al. (2024) has validated
subsystem Σ2 by optimizing the response spectra for a
range of experimental sea trials. The parameters for α2 is
reported as L̃ = 6.146 m, B̃ = 1.236 m and T̃ = 0.287 m.

• Propulsion model : The physical parameters for the foil
placement, dimensions and force characteristics has been
measured and listed in detail by Tufte (2024). The lift and
drag curve parameters αs, CLs, CDs,∆s, Eqs. (23a)–(23b),
was optimized with panel method software.



6.1 Simulations and course control demonstration

• Simulation: The effect of spring stiffness (Tufte, 2024) is
shown in Fig. 5, and suggest that soft springs are suited
for wave-propulsion at wave frequencies ω < 1.4 rad/s, the
medium setting at ω = 1.4–2.2 rad/s and the stiff springs
are most efficient for short-crested sea, at ω > 2.2 rad/s.
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Fig. 5. Forward speed prediction with different spring
settings. The results should be analysed with respect
to the wave frequencies present, e.g., the Pierson-
Moskowitz spectrum, (units not shown).

• Control example: Additionally, a line of sight (LOS)
course control was simulated in Fig. 6. The controller gains
Kp = 1.0,Ki = 0.05 andKd = 10 gave satisfactory results.
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Fig. 6. LOS course control simulation for 200 seconds.
Wave height 0.5 m, wave frequency ω = 2.5 rad/s,
propagation direction βk = 40◦. Current (0.2 m/s)
and wind (2.5 m/s) directions shown in compass rose.

• On validation: While the framework successfully inte-
grates closed-form models, further validation is needed
across a range of operational scenarios. Future work should
in detail describe the final model validated to experimental
data, and compare to data-driven prediction in Øveraas
et al. (2022) or similar studies. Exploring nonlinear damp-
ing, and a fully coupled model would improve predictive
accuracy for advanced guidance and control development.

7. CONCLUSION

This paper has presented a unified modelling framework
for predicting the motion of wave-propelled uncrewed
surface vehicles (USVs) using closed-form expressions. By
decomposing the system into manoeuvring dynamics, wave
induced responses, and foil dynamics, the model captures
essential physical interactions and wave-propulsion in a
computationally efficient manner. The feasibility of the
approach was demonstrated through application to a 5.0 m
AutoNaut platform with partly validated parameters and
a simulated course control example. The results support
the model’s potential use for early-stage control design and
decision-support systems for wave-propelled USVs.

Future work should consider experimental validation un-
der varying sea states and possible test various use cases.

Accounting for nonlinear damping, unsteady hydrody-
namic effects and coupling in more detail could improve
accuracy in high sea states or aggressive manoeuvres.
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