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Abstract— A strategy for decomposing a class of constrained
linear control allocation problems is considered. The actuators
are partitioned into groups of mutually non-interacting actua-
tors. The problem is then divided into a set of sub-problems and
a master problem, whose solution approximates the solution to
the original problem. For some classes of allocation problems
the method is extended such that it also yields an optimal
solution. The motivation behind the approach is to reduce
the computational effort needed to find explicit solutions by
obtaining sub-optimal solutions, increase possibilities of recon-
figurable control allocation, and to provide a scheme that allows
for a tradeoff between the drawbacks and benefits of the explicit
solution to control allocation problems.

Index Terms— Parametric programming. Quadratic pro-
gramming. Linear programming. Mixed integer programming.
Constrained linear control allocation.

I. INTRODUCTION
The task in control allocation is to determine how to

generate a specified generalized force from a redundant set
of actuators where the associated controls are constrained,
see e.g. [1]–[6]. The main objective is to obtain the desired
generalized force, however, it is also common to incorporate
secondary objectives, such as minimizing energy consump-
tion and limiting the rate of change for a control input.
Several other factors, such as actuator dynamics [5] and
power management, can also be incorporated. One way of
achieving these secondary goals is to solve a constrained
optimization problem online at every sampling instant.

Only recently, it has, in conformity with the explicit model
predictive control approach [7], [8], been proposed to solve
the optimization problem off-line [4] by utilizing parametric
programming techniques [7], [9]–[12]. The online compu-
tational effort then reduces to evaluate a piecewise affine
function, which can be formulated as a point location prob-
lem [13], [14]. The four main advantages of this approach
are: i) removing the need for sophisticated optimization
software on the microchip/proseccor, ii) the correctness of
the solution can be verified off-line, which is a key issue
in safety critical applications, iii) the worst case number of
arithmetic operations needed to find the solution can easily be
computed, and iv) for a large class of problems the average
and worst case number of arithmetic operations needed to
find the solution is greatly reduced. The main drawbacks, on
the other hand, are that i) obtaining an explicit solution may
be computationally intractable, ii) the storage space required
to represent the solution may exceed the available memory,
and iii) in the context of constrained control allocation, the
method does not easily allow reconfigurable control without
increasing problem complexity.
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In this paper we propose a decomposing strategy for ob-
taining feasible, sub-optimal solutions to constrained linear
control allocation problems. The procedure is motivated by
the observation that for practical problems not all the actu-
ators interact directly, suggesting a division of the problem
into a set of smaller problems. The actuators are partitioned
such that each element of the partition does not interact with
the other elements (note that in this paper, the term actuators
also include effectors, for example, both the rudder, and the
engine that drives it, are labelled actuators). A master- and a
set of sub-problems are designed for the purpose of obtain-
ing a feasible, but sub-optimal solution. The decomposing
scheme is also extended to yield an optimal solution for a
class of allocation problems. In the proposed scheme we can
choose to solve some of the problems explicitly and some
online, allowing the designer to choose an approach that is
best suited for the hardware and software available. Another
benefit of the procedure is that reconfigurable control is
somewhat more computationally tractable.

II. PROBLEM SETUP

A. Basic definitions and nomenclature

If I is an index set, then |I| denotes the cardinality of I
and Ii refers to the ith element in I. When referring to a
set of indices I, we assume that the set is ordered, i.e. for
the ith element in I we have Ii < Ij , ∀j ∈ {i+1, . . . , |I|}.
Recall that a partition of a set S is a collection of sub-sets
of S such that the sub-sets are mutually disjoint and their
union is equal to S. Let Nq denote the set {1, 2, . . . , q}.
If A ∈ R

n×m is a matrix or column vector, then A(i,∗) ∈
R

1×m denotes the ith row of A and A(I,∗) ∈ R
|I|×m denotes

the matrix [AT
(I1,∗), . . . , A

T
(I|I|,∗)]

T . Similarly, A(∗,i) ∈ R
n×1

denotes the ith column of A and A(∗,I) ∈ R
n×|I| denotes

the matrix [A(∗,I1), . . . , A(∗,I|I|)]. If A is a column vector,
i.e. A ∈ R

n×1, then A(I,∗) ∈ R
|I|×1 is abbreviated AI .

Finally, if
{
J i | i ∈ I

}
is a partition of the index set J

and u ∈ R
|J | is a vector, we define the operator sort(·) as

the operator that maps the set of sub-vectors {uJ i | i ∈ I }
into R

|J | and restores the original ordering of the vector, i.e.
u = sort ({uJ i | i ∈ I }).

Recall that the set of affine combinations of points in
a set S ⊂ R

n is called the affine hull of S, and is
denoted aff(S). The dimension of a set S ⊂ R

n is the
dimension of aff(S), and is denoted dim(S); if dim(S) = n,
then S is said to be full-dimensional. The closure and interior
of a set S is denoted cl(S) and int(S), respectively. A
polyhedron is the intersection of a finite number of open
and/or closed half-spaces. A polygon is a finite union of
polyhedra. If F : X → Y is a mapping, then the restriction
of F to the domain D ⊆ X is written F |D : D → Y . If a
mapping F is set-valued the notation F : X ⇒ Y specifies



this. A function f : R
n → R

m is said to be piecewise affine
(PWA) on D ⊂ R

n if D can be represented as a finite union
of polyhedra, relative to each of which f(x) is given by an
affine expression.

B. Static linear control allocation
Consider the system

ẋ = f(t, x, τ̄),
τ̄ = Bu,

where x ∈ R
n is the state, t is time, τ̄ ∈ T ⊆ R

r are
the generalized forces (virtual controls), u ∈ R

m are the
controls, and the matrix B ∈ R

r×m defines the (linear)
relationship between the generalized forces and the controls.
Assume further that a virtual controller τ := k(t, x) is given,
i.e. τ is our desired generalized force (virtual control). The
task in control allocation is to generate the force τ the
controller specifies using the available controls u ∈ U ⊆ R

m,
where U is assumed to be full-dimensional and bounded.
Since, in general, one cannot assume that it is possible
to generate τ when u is constrained to U , slacks s are
introduced in order to ensure that a solution is always
obtained, i.e. Bu+s = τ . Hence, the linear control allocation
problem can be stated as:

P(τ) : J∗(τ) : = inf
(u,s)∈Y(τ)

J(u, s, τ) (1a)

: = inf
(u,s)∈Y(τ)

‖Qs‖l + ‖Ru‖l, (1b)

Y(τ) : =
{

(u, s) ∈ R
m × R

p

∣∣∣∣ Bu + s = τ,
u ∈ U

}
,

(1c)

where Q ∈ R
p×p and R ∈ R

m×m are weight matrices, re-
spectively penalizing use of controls and infeasibility, and l ∈
{1, 2,∞}1 denotes the weighting norm. We will assume
that P(τ) attains its minimum over Y(τ), ∀τ ∈ T , where T
is a full-dimensional polygon (where each polyhedron in T
is also assumed to be full-dimensional). Henceforth, we write
the problem as minimization. In the sequel let the set valued
map U∗ : R

r ⇒ R
m be defined as

U∗(τ) :=

{
u

∣∣∣∣∣ u ∈ arg min
(u,s)∈Y(τ)

J(u, s, τ)

}
.

and let u∗(·) : R
r → R

m denote a single-valued selection
of U∗(·), i.e. u∗(τ) ∈ U∗(τ) for all τ ∈ T . We also let
s∗(·) denote a single-valued selection of S∗(·) where S∗(·)
is defined by replacing u with s in the equation above.

In the sequel we distinguish between two types of linear
allocation problems; i) where the set U is convex, and ii)
when U is non-convex. We will also make use of the
following assumption:

Assumption 1: Define:

Pε(τ) : J∗
ε (τ) := min

(u,s)∈Yε(τ)
J(u, s, τ),

Yε(τ) :=
{

(u, s) ∈ R
m × R

p

∣∣∣∣ Bu + s = τ,
u ∈ Uε

}
,

1l = 2 denotes, with some abuse of mathematical rigor, the quadratic
norm, that is, ‖Qx‖2 := xT Qx.

and let the set U be full-dimensional and bounded. Given any
ε > 0 we assume that there exists a polygon Uε := ∪i∈IU i

that inner approximates U in the sense that Uε ⊆ U , where I
contains a finite number of elements and each U i is a full-
dimensional polyhedron, and

∀τ ∈ T J∗
ε (τ) ≤ J∗(τ) + ε and arg min

(u,s)∈Yε(τ)

J(u, s, τ) �= ∅
As a consequence of the above assumption, we will hence-
forth assume that the set U in P(τ) is a polygon or a
polyhedron, which will be clear from the context.

C. Reconfigurable control allocation
In many applications it is desirable to be able to switch

on and off actuators or to change the constraints imposed on
the control inputs to an actuator. The most straightforward
way of achieving this is to define additional parameters φ,
and rewrite (1) as

J∗(τ, φ) : = min
(u,s)∈Y(τ,φ)

‖Qs‖l + ‖Ru‖l,

Y(τ, φ) : = {(u, s) ∈ R
m × R

p |Bu + s = τ, u ∈ U(φ)} .

This approach does not complicate the online optimization
problem. In addition, if the parametrization U(·) is linear, it
is possible to solve the problem explicitly [4], however, with
this approach the complexity of the optimal control u∗(·, ·)
is often too high for the available memory, and, in some
cases, it may even be computationally intractable to obtain
the explicit solution.

III. EXPLICIT SOLUTIONS TO CONTROL ALLOCATION
PROBLEMS

Recently it has been proposed to solve (1) explicitly(see
e.g. [4], [6]) and thereby avoid online optimization. The
next three subsections summarizes the solution properties
of parametric linear-, quadratic-, and mixed integer linear
programs.

A. Parametric linear programs [9], [12], [15]

Consider the linear program with parameters on the right
hand side of the constraints:

J∗(θ) : = min
x∈P (θ)

cT x, (2a)

P (θ) : = {x ∈ R
n |Ax ≤ b + Sθ} (2b)

where c, A, b, and S are matrices with suitable dimensions,
and (2) is to be solved for all values of θ ∈ Θ ⊆ R

s, where Θ
is the set of parameters in which the minimum in (2) exists.

Theorem 1: Consider (2).

1) The function J∗ : Θ → R is continuous, convex and
PWA on closed, full-dimensional, polyhedra.

2) There exists an optimizer function x∗ : Θ → R
n, θ →

x∗(θ) ∈ arg min
x∈P (θ)

cT x that is continuous and PWA on

closed, full-dimensional, polyhedra.
Obtaining a continuous selection x∗(·) can be done for
instance via lexicographic perturbation of the pLP [16] or
by choosing the minimum norm solution [17].



B. Parametric quadratic programs [7]
Consider the convex quadratic program with parameters

on the right hand side of the constraints:

J∗(θ) : = min
x∈P (θ)

1
2
xT Hx + cT x, (3a)

P (θ) : = {x ∈ R
n |Ax ≤ b + Sθ} (3b)

where H , c, A, b, and S are matrices with suitable dimen-
sions, and H = HT ≥ 0.

Theorem 2: Consider (3)
1) The function J∗ : Θ → R is continuous, convex

and piecewise quadratic on closed, full-dimensional,
polyhedra.

2) There exists an optimizer function x∗ : Θ → R
n, θ →

x∗(θ) ∈ arg min
x∈P (θ)

1
2xT Hx+ cT x that is continuous and

PWA on closed, full-dimensional, polyhedra.
A continuous selection can be obtained by choosing the
minimum norm solution [18]. Note that if H > 0, the
solution x∗(·) to (3) is unique, and hence, also continuous.

C. Parametric mixed-integer linear programs [10], [12]
Consider the mixed integer linear program with parameters

on the right hand side of the constraints:

J∗(θ) : = min
(x,y)∈P (θ)

cT x + dT y, (4a)

P (θ) : = {(x, y) ∈ R
n × {0, 1}p |Ax + Dy ≤ b + Sθ}

(4b)

where c, d, A, D, b, and S are matrices with suitable
dimensions.

Theorem 3: Consider (3)
1) The function J∗ : Θ → R is lower-semicontinuous and

PWA.
2) There exists optimizer functions x∗ : Θ → R

n and y∗ :
Θ → {0, 1}p, θ → (x∗(θ), y∗(θ)) ∈ arg min

(x,y)∈P (θ)

cT x +

dT y that are respectively PWA and piecewise constant.

D. Explicit solution to constrained linear control allocation
If we consider (1), then under our assumption on U we

have that T is a polygon. Moreover, if l ∈ {1,∞} and U is a
polyhedron, then (1) can be written as a pLP (2) by viewing τ
as parameters. Similarly if l = 2 and U is a polyhedron we
have a pQP (3). Finally, if U is a polygon, we have that (1)
is a pMILP (l ∈ {1,∞}) or pMIQP (l = 2).

IV. DECOMPOSING ALLOCATION PROBLEMS

In this section we propose the decomposing scheme for
constrained linear control allocation for the case where U
(or its inner approximation) is convex. In the sequel, if u ∈
U ⊆ R

n and I ⊆ Nn is an index set, then UI denotes
the set UI :=

{
uI ∈ R

|I| ∣∣ ∃uNn\I : (uI , uNn\I) ∈ U
}

.
Moreover, if J ⊆ Nn is another index set such that I ∩J =
∅, then with some abuse of notation, UI(uJ ) denotes the set

UI(uJ ) :=
{

uI ∈ R
|I|

∣∣∣∣ ∃uNn\(I∪J ) :
(uI , uJ , uNn\(I∪J )) ∈ U

}
Definition 1 (Non-interacting actuators): Let the

controls u be constrained to U . Given two actuators,
A and B, and corresponding index sets A and B such

that uA ∈ R
|A| and uB ∈ R

|B| are the control inputs to
actuator A and B, respectively. The actuators A and B are
said to be non-interacting if and only if

UA(uB) = UA, ∀uB ∈ UB, and
UB(uA) = UB, ∀uA ∈ UA.

Remark 1: For linear constrained control allocation prob-
lems non-interacting actuators means that by changing the
control input for actuator A, the constraints on the control
inputs to actuator B are unchanged. Note however, that the
controls may still be coupled through the linear relation-
ship Bu = τ̄ . In addition, we would like to point out that
the linear version of the control allocation problem is often
an approximation to a non-linear relationship τ̄ = g(x, u, t).
If this is the case, then one should add additional restrictions
on the interactions between the actuators in the sense that:
the contribution to the generalized forces from actuator A
is unchanged for all possible contributions from actuator B.
This captures non-linear interaction between the actuators,
for example, for marine vessels it is not uncommon to loose
effect from thruster A if thruster B affects the flow pattern
around thruster A.

Definition 2 (Non-interacting actuator partition):
Consider a set of actuators P := {pi | i ∈ I } and the
partition {Pj | j ∈ J } of P . If for every pair (pA, pB) ∈
Pk × Pj , ∀k ∈ J and ∀j ∈ J , k �= j, (pA, pB) are
non-interacting actuators, then {Pj | j ∈ J } is said to be a
non-interacting actuator partition of P .
In the sequel, let {Pj | j ∈ J } denote a non-interacting ac-
tuator partition of P and

{
J j | j ∈ J

}
be the corresponding

collection of index sets, i.e. the control inputs to the actuators
in Pj are uJ j . It is immediate that we can write P(·) as

J∗(τ) : = min
(u,s)∈Y(τ)

‖Qs‖l + ‖Ru‖l,

Y(τ) : =
{

(u, s)
∣∣∣∣ s +

∑
j∈J B(∗,J j)uJ j = τ

uJ j ∈ UJ j , ∀j ∈ J

}
.

In the next section we re-formulate the above problem to
obtain a master- and a set of sub-problems.

A. Decomposing Constrained Linear Control Allocation
over Convex Sets

In this section we propose the method for decomposing
the allocation problem. M(·) will denote the master problem
and a sub-problem will be denoted Sj(·) for j ∈ J . The
master problem is defined as

M(τ) : V ∗(τ) := min
{s,τ1,...,τ |J |}

‖Qs‖l +
∑
j∈J

‖Hjτ j‖l

(5a)

s.t. s +
∑
j∈J

τ j = τ, (5b)

τ j ∈ T j ⊂ R
r, ∀j ∈ J , (5c)

where Hj = (Hj)T ≥ 0 ∈ R
r×r are suitably defined weight

matrices and

T j :=
{
τ j ∈ T ⊆ R

r
∣∣ ∃yJ j : yJ j ∈ Nj(τ j)

}
(6a)

Nj(τ j) := UJ j ∩
{

yJ j ∈ R
|J j | ∣∣ B(∗,J j)yJ j = τ j

}
.

(6b)



It is clear that T j is the set of all possible generalized forces
(virtual controls) that can be generated by the actuators in
the jth element of the actuator partition.

For a given j ∈ J , the jth sub-problem is defined as:

Sj(τ j) : V ∗
j (τ j) := min

yJ j ∈Nj(τj)
‖R(J j ,J j)yJ j‖l. (7)

For notational simplicity we let {sM(·), τ1(·), . . . , τ |J |(·)}
denote a set of single valued, continuous, selections for M(·).
Moreover, {yJ 1(·), . . . , yJ |J |(·)} are single valued, contin-
uous, selections for {Sj(·) | j ∈ J }. By a solution to M(·)
and {Sj(·) | j ∈ J } we mean the function y∗ : R

r → R
m

defined as

y∗(τ) := sort
(
{yJ 1(τ1(τ)), . . . , yJ |J |(τ |J |(τ))}

)
,

i.e. y∗(·) has the same dimension and ordering as u∗(·).
Lemma 1: Consider M(·), {Sj(·) | j ∈ J } and (1). We

have that if (sM(·), y∗(·)) is a feasible solution to M(·)
and {Sj(·) | j ∈ J }, then (sM(·), y∗(·)) is feasible for (1).
Moreover, if R(J j ,J j) = RT

(J j ,J j) ≥ 0 for all j ∈ J , then
we have

1) if l = 2, then V ∗ : R
r → R and each V ∗

j :
R

r → R, j ∈ J are piecewise quadratic, convex, and
continuous.

2) if l ∈ {1,∞}, then V ∗ : R
r → R and each V ∗

j : R
r →

R, j ∈ J are PWA, convex, and continuous.
Proof: The feasible sets are equal by construction. The

properties of V ∗(·) and each V ∗
j (·) follows from noting that

the problems are pQPs for l = 2 and pLPs for l ∈ {1,∞}
(Theorems 1 and 2).

How to choose the weight matrices Hj , j ∈ J such that
the solution (sM(·), y∗(·)) is not only feasible for (1), but
also as close to optimal as possible is non-trivial, however,
we will not elaborate on this, since exact solutions can be
obtained by imposing a natural assumption on R, which is
stated below. In Section V we will show by example that
if the problem has certain symmetry properties, the weight
matrices

{
Hj | j ∈ J

}
are easy to choose.

Assumption 2: Consider (1). For the weighting matrix R,
set of actuators P := {p1, . . . , pI}, and non-interacting actu-
ator partition {Pj | j ∈ J } of P , we assume that R(J i,J j) =
R(J j ,J i) = 0 if i �= j. Moreover, we assume that for each
j ∈ J we have that R(J j ,J j) = RT

(J j ,J j) ≥ 0.
Lemma 2: Assumption 2 has the consequence that for l ∈

{1, 2} we have:

‖Ru‖l =
∑
j∈J

‖R(J j ,J j)uJ j‖l, (8)

and for l = ∞ we have

‖Ru‖∞ = max
j∈J

{‖R(J j ,J j)uJ j‖∞}

Proof: For the quadratic norm we have

‖Ru‖2 := uT Ru =
[
uT
J 1 . . . uT

J |J |
]

diag
(
R(J 1,J 1), . . . , R(J |J |,J |J |)

) [
uT
J 1 . . . uT

J |J |
]T

= ‖R(J 1,J 1)uJ j‖2 + · · · + ‖R(J |J |,J |J |)uJ |J |‖2,

and for l = 1 we recall that if i /∈ J j then R(i,J j)uJ j = 0,
and hence

‖Ru‖1 =
∑

p∈Nm

∣∣∣∣∣∣
∑

q∈Nm

R(p,q)uq

∣∣∣∣∣∣
=

∑
j∈J

∑
p∈J j

∣∣∣∣∣∣
∑

q∈J j

R(p,q)uq

∣∣∣∣∣∣ =
∑
j∈J

‖R(J j ,J j)uJ j‖1.

For l = ∞, Assumption 2 clearly leads to

‖Ru‖∞ = max

⎧⎨
⎩

∣∣∣∣∣∣
∑

p∈Nm

R(1,p)up

∣∣∣∣∣∣ , . . . ,

∣∣∣∣∣∣
∑

p∈Nm

R(m,p)up

∣∣∣∣∣∣
⎫⎬
⎭

= max
{
‖R(J 1,J 1)uJ 1‖∞, . . . , ‖R(J |J |,J |J |)uJ |J |‖∞

}

In the following lemma we are only concerned with the
set T ∗ ⊆ T in which s∗(τ) = 0 i.e. we have also assumed
that ‖Qs‖l is an exact penalty function for (1) [4].

Lemma 3: Consider M(·), {Sj(·) | j ∈ J } and (1), and
let l ∈ {1, 2}. By changing the master problem to

Me(τ) : V ∗(τ) := min
{t,τ1,...,τ |J |}

t (9a)

s.t. t ≥
∑
j∈J

V ∗
j (τ j) (9b)

∑
j∈J

τ j = τ, (9c)

τ j ∈ T j , ∀j ∈ J , (9d)

we have that J∗(τ) = V ∗(τ), ∀τ ∈ T ∗, y∗(·) ∈ U∗(·)
and Me(·) is a convex optimization problem.

Proof: Convexity of Me(·) follows easily by noting that
all constraints are linear except (9b), which is also convex
due to Theorem 1 and 2. Note first that by construction
y(·) = u∗(·) is feasible for (9) and {Sj(·) | j ∈ J } and
that J(u∗(τ), 0, τ) = J∗(τ), ∀τ ∈ T ∗. We also have

V ∗(τ) = t∗(τ) ≥
∑
j∈J

V ∗
j (τ j) =

∑
j∈J

‖R(J j ,J j)yJ j (τ j)‖l

= ‖Ry∗(τ)‖l = J(τ, 0, y∗(τ)).

Hence, if y∗(τ) /∈ U∗(τ) then J(y∗(τ), 0τ) >
J(u∗(τ), 0, τ), which contradicts optimality since u∗(τ) is
feasible for (9) and {Sj(·) | j ∈ J }.

For l = ∞ the master problem has to be modified slightly
as demonstrated by the following lemma:

Lemma 4: Consider M(·), {Sj(·) | j ∈ J } and (1), and
let l = ∞. By changing the master problem to

Me(τ) : V ∗(τ) := min
{t,τ1,...,τ |J |}

t

s.t. t ≥ V ∗
j (τ j) ∀j ∈ J∑

j∈J
τ j = τ,

τ j ∈ T j , ∀j ∈ J ,

we have that J∗(τ) = V ∗(τ), ∀τ ∈ T ∗, y∗(·) ∈ U∗(·)
and Me(·) is a convex optimization problem.



Proof: The proof is identical to the proof of Lemma 3,
except

V ∗(τ) = t∗(τ) ≥ max{‖R(J 1,J 1)yJ 1(τ1)‖∞, . . . ,

‖R(J |J |,J |J |)yJ |J |(τ |J |)‖∞} = ‖Ry∗(τ)‖∞.

Remark 2: For l ∈ {1,∞} it is straightforward to
solve Me(·) explicitly since T ∗ can be expressed as a union
of polyhedra, and in each of these Me(·) is a pLP. On
the other hand, for l = 2, there is currently no available
algorithm for obtaining an exact, explicit, solution of (9).

B. Decomposing Constrained Linear Control Allocation
over Non-convex Sets

If the set of attainable forces U is a non-convex polygon,
U = ∪i∈IU i, the optimization problem (1) is no longer
convex. However, the set Y(·) can be written as

Y(τ) :=
{

(u, s)
∣∣∣ Bu + s = τ, u ∈ U1 ∨ · · · ∨ U |I|

}
,

and (1) becomes a parametric mixed integer program. In
this case the problem can also be decomposed into M(·)
and {Sj(·) | j ∈ J } for the purpose of obtaining sub-
optimal solutions. The main difference being that the sets{
T j | j ∈ J

}
are more computationally demanding to ob-

tain, since UJ j = ∪i∈IU i
J j . In the non-convex case, both

the master- and sub-problems are parametric mixed integer
programs. For brevity, we do not consider this case in detail.

C. Reconfigurable control allocation
If the master-problem is solved online, we can obtain a

tradeoff between the benefits and drawbacks of the explicit
solution when the scheme is applied to reconfigurable control
allocation. By introducing extra parameters in the allocation
problem, as described in Section II-C, the complexity of
u∗(·) may increase to the level where the explicit scheme is
rendered unusable. By solving the master problem online and
the sub-problems explicitly, the control actions from actuator
group Pj can be limited simply by changing the constraints
on τ j .

V. NUMERICAL EXAMPLE

Note that in this section we use slightly different indexing
of the variables. Consider the following allocation problem:

min
{u,s}

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uT Ru + sT Qs

∣∣∣∣∣∣∣∣∣∣∣

sx +
∑4

i=1 ui,x = τx

sy +
∑4

i=1 ui,y = τy

|ui,x| + |ui,y| ≤ 2,
i = 1, 2

|ui,j | ≤ 2,
i = 3, 4, j = x, y

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(10)

where R = diag(1, 1, . . . , 1) and Q = diag(103, 103). In this
problem we have four actuators P := {p1, . . . , p4}, where
the ith actuator has two controls, ui,x ∈ R and ui,y ∈ R,
and we have two generalized forces, τx ∈ R and τy ∈
R. Moreover, we define u := [u1,x, u1,y, . . . , u4,x, u4,y]T
and τ := [τx, τy]T . Looking at the constraints it can be
straightforwardly verified that all the actuators are non-
interacting. In this example we show two different actuator
partitions; first choose the following non-interacting actu-
ator partition {P1, P2}, where P1 = {p1, p3} and P2 =
{p2, p4}, yielding u1 := [u1,x, u1,y, u3,x, u3,y]T , and u2 :=

[u2,x, u2,y, u4,x, u4,y]T . Following the proposed procedure
we get the following master problem

min
τ1,τ2,s

⎧⎨
⎩sT Qs +

2∑
j=1

(τ j)T Hjτ j

∣∣∣∣∣∣
τ = s + τ1 + τ2

τ j ∈ T j , j = 1, 2

⎫⎬
⎭ (11)

where

T 1 =

⎧⎨
⎩τ1 ∈ T

∣∣∣∣∣∣ ∃u1 :
B1u1 = τ1

|u1,x| + |u1,y| ≤ 2
|u3,i| ≤ 2, i = x, y,

⎫⎬
⎭

where B1 consists of the column in B that multiply with
u1, and T 2 is found by replacing the appropriate indices,
which yields an identical set, i.e. T 1 = T 2. Moreover, since
we have a symmetrical problem, we choose H1 = H2 =
diag(1, 1). The first sub-problem becomes

min
u1

⎧⎪⎨
⎪⎩(u1)T diag(1, 1, 1, 1)u1

∣∣∣∣∣∣∣
u1,x + u3,x = τ1

x

u1,y + u3,y = τ1
y

|u1,x| + |u1,y| ≤ 2
|u3,i| ≤ 2, i = x, y

⎫⎪⎬
⎪⎭
(12)

and the second sub-problem is found by replacing
the appropriate indices. Let the function z∗(·) :=
[s∗(·)T (τ1(·))T (τ2(·))T ]T denote the PWA solution to
the master problem, and u1(·) and u2(·) be the solutions
to the two sub-problems. The polyhedra that u∗(·), z∗(·)
and u1(·) are defined on are depicted in Figures 1(a)-1(c),
respectively. Note also that u2(·) = u1(·). Figures 2(a)-2(c)
depicts the solutions for the master and two subproblems for
the the actuator partition P1 = {p1, p2} and P1 = {p3, p4}.
Considering the first actuator partition it is apparent that an
explicit solution to the problem can be found by solving
two smaller mpQPs (the two sub-problems are identical),
but more importantly, one can choose to solve either of the
problems on-line, allowing a tradeoff between the online
computation time and the required storage space. From this
example we see that the proposed strategy provides great
flexibility. We have the following alternatives for the first
actuator partition:

1) Solving master and sub-problems online.
2) Solving the master problem online and one subproblem

explicitly, and since the sub-problems are identical this
only yields 13 stored polyhedra.

3) Solving the master problem explicitly and one of the
sub-problems online.

4) Solving both the master- and sub-problems explicitly.
Obviously, we have similar alternatives for the second
actuator partition. Finally, note that for the first actuator
partition we have u1(·) = u2(·) and that the solution to
the original problem also has u1 = u2 (a strictly convex
problem where the constraints and weights on u1 and u2

are identical.) Thus, if we choose H1 = H2 = diag(1, 1),
we have a strictly convex master-problem whose solution is
unique (τ1(·) = τ2(·)), hence, (u1(τ1(τ)))T u1(τ1(τ))) +
(u2(τ2(τ)))T u2(τ2(τ)) = (u∗(τ))T u∗(τ), i.e. the solution
is optimal also for the original problem.

VI. CONCLUSION

We have proposed a decomposing strategy for linear
constrained control allocation problems. The actuators are
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(a) The set of polyhedra representing the
solution v∗(·) := (s∗(·), u∗(·)) to (10).
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(b) The set of polyhedra representing the
solution z∗(·) to (11) with the actuator
partition P1 = {p1, p3} and P2 =
{p2, p4}.
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(c) Set of polyhedra representing the so-
lutions u1(·) and u2(·) to the first sub-
problem (12) and the second sub-problem.

Fig. 1. Explicit solutions with the actuator partition P1 = {p1, p3} and P2 = {p2, p4}.
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(a) The set of polyhedra representing the
solution z∗(·) to (11) with the actuator
partition P1 = {p1, p2} and P2 =
{p3, p4}.
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(b) Set of polyhedra representing the so-
lution u1(·) for the first sub-problem, de-
fined by actuator group P1 = {p1, p2}.
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(c) Set of polyhedra representing the so-
lution u2(·) for the second sub-problem,
defined by actuator group P2 = {p3, p4}.

Fig. 2. Explicit solutions with the actuator partition P1 = {p1, p2} and P2 = {p3, p4}.

partitioned such that a sub-optimal solution can be found be
solving a master- and a set of sub-problems. It has also been
shown that the decomposing strategy can provide an optimal
solution to some classes of allocation problems if the master
problem is modified appropriately. The advantages with the
scheme is that it allows the designer to choose a mix of online
optimization and explicit solutions of the allocation problem,
providing a tradeoff between the benefits and drawbacks of
the explicit approach.
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[13] P. Tøndel, T. A. Johansen, and A. Bemporad, “Computation of
piecewise affine control via binary search tree,” Automatica, vol. 39,
no. 5, pp. 945–950, 2003.

[14] C. N. Jones, P. Grieder, and S. V. Raković, “A logarithmic-time solu-
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